

APPLICATION NOTE
UT700
Enable the Interrupt Controller Module
UT700 LEON 3FT

9/29/2017
Version #: 1.0.1

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 2 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

Table 1: Cross Reference of Applicable Products

Product
Name

Manufacturer
Part Number SMD # Device

Type
Internal PIC

Number
UT700 LEON UT700 5962-13238 Interrupt Controller Module WQ03

1.0 Overview
The UT700 LEON 3FT SPARC™ processor consists of multiple embedded modules that support a wide range of applications.
Each module has embedded control logic allowing the modules to function independently without the microprocessor
intervention. This spatial paradigm improves the throughput of the UT700 by enabling all the modules to operate in
concurrency.

This operational paradigm for the embedded modules posed a different challenge to data transactions between the
microprocessor and the modules; module software drivers need to know when data is available for retrieving. Data
retrieval through software synchronous access method is adding another layer of complexity to the application program.
This software synchronous access method employs software polling methods that result in a nondeterministic software
response time and reduces the throughput of the system. To overcome this data retrieval problem, the UT700 provides an
asynchronous data availability notification method that eliminates the needs to poll for data availability while providing a
deterministic response time to invoke the module software drivers.

This asynchronous data availability notification method is made possible with the use of the UT700’s Interrupt Controller
that provides interrupts to invoke the software drivers for data retrieval. The UT700’s Interrupt Controller provides 15
interrupt services and an extended interrupt service to facilitate more interrupt services to the UT700. We explore the
Interrupt Controller, its features and how to configure it to perform tasks.

Note: The description in this application note describes how to directly use the memory mapped interface of a specific hardware
peripheral. If you are using an operating system such as RTEMS, Linux, and VxWorks or an environment such as BCC then it is
recommended to use the infrastructure provided by those environments instead of accessing the peripheral directly as described in this
application note.

2.0 Application Note Layout
This application note (AN) starts by providing a brief description of the Interrupt Controller memory map, the associated
registers, the 15 interrupts and the extended interrupts services. This description of the Interrupt Controller falls under the
Interrupt Controller Hardware sections.

After the Interrupt Controller Hardware sections, this AN provides a high-level flow diagram to depict the correct sequential
steps to initialize the interrupt services. We will describe each block in the order as shown in the flow diagram. The
description of the flow diagram falls under the Interrupt Controller Initialization sections.

Finally, we can apply this knowledge using C programming code to enable the UT700 Interrupt Controller to provide
asynchronous data availability notification to the system and invokes the module device drivers to performance data
retrieval. The C code programming examples fall under the Interrupt Controller Programming sections.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 3 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

These subsections are described in detail below:

• Interrupt Controller Hardware
• Interrupt Controller Initialization
• Interrupt Controller Programming

3.0 Interrupt Controller Hardware
The Interrupt Controller provides a way for an asynchronous notification to the system. It has seven registers, and these
registers are mapped in the peripheral's memory region from 0x8000_0200 to 0x8000_02C0. These interrupts have two
level setting options; a lower priority with a 0 level setting (Also the default setting) and a higher priority with a 1 level
setting. Besides the interrupt level setting options, the interrupt number also shows the priority of that interrupt; the higher
the interrupt number, the higher is the priority.

Table 2: Interrupt Priority Settings

Interrupt Number
Level Setting

Case 1 Case 2
15 0 0

14 0 0

13 0 0

3 0 1

2 0 1

1 0 1

Table 2 shows the 6 interrupts with different level setting options. In both cases, if all the interrupts happened at the same time,
this is how the Interrupt Controller decodes them as shown in Table 3. Interrupt number 9 is also used as an extended interrupt,
a feature to increase the number of interrupts in the system while remaining backward compatible with the older devices.

Table 3: Interrupt Decoding Order

Decodes Order
Interrupt Number

Case 1 Case 2
1 15 3

2 14 2

3 13 1

4 3 15

5 2 14

6 1 13

For more details about the Interrupt Controller, see the UT700 Function Manual Chapter 5.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 4 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

4.0 Interrupt Controller Initialization
Interrupt Controller Initialization is a precise task. If the initialization is performed in the incorrect order, the desire
interrupt service routine (ISR) will not function or the system will crash; debugging a non-functional ISR is an intensive
laboring job, no debugger can assist in this process. Therefore, knowing the correct procedural steps to initialize the
interrupt controller helps get the desired ISR working and ready for additional software flow control required by the ISR
to perform its task.

Figure 1 shows the procedural steps to initialize the interrupt controller. We will describe each step in the flow diagram in
the following sections.

Figure 1: Interrupt Controller Initialization Steps

4.1 Disable All Interrupts

On power on reset, the Interrupt Mask Register is clear; the interrupts are masked (Disabled). Nonetheless, it is a good practice
to clear the interrupt level register (ILR), clear the interrupt mask register (IMR) and set the interrupt clear register (ICR).

4.2 Interrupt Service Routine (ISR)

The ISR for Bare C Compiler (BCC) takes the form as shown in Code 1. This ISR function format applies to both ISR and
extended ISR. The parameter “irq” is the interrupt number 1 to 15.

 Code 1: ISR Function Format

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 5 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

For the extended ISR, we need to add function calls within the extended ISR to invoke the respective device drivers, see
Code 2.

Code 2: Extended ISR Function Format

We will describe the ISR and extended ISR in detail in Interrupt Controller Programming sections.

4.3 Attached ISR to Interrupt

This process associates the ISR to the appropriate interrupt. In BCC, we use the following function as shown in Code 3. Once
the ISR is attached to a particular interrupt, this ISR will only service that interrupt.

Code 3: Catch Interrupt Function

4.4 Enable Peripheral Interrupt

This process enables peripheral device interrupt associated to that Interrupt number. Each peripheral device has its own set
of registers to support interrupt; refer to the UT700 Functional Manual, Chapter 5 and the module chapter, for the more
information.

4.5 Enable Interrupt

Finally, we enable the Interrupt mask register (IMR) to enable the interrupt that we have associated to the ISR. This
completes the Interrupt Controller Initialization process.

Section 5.0 shows how these steps are done using C programming language. We also show how to use the Interrupt Force
Register to invoke an ISR; a feature that is useful for testing ISR.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 6 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

5.0 Interrupt Controller Programming
We learned from Section 4.0 how to enable the Interrupt Controller, how the interrupts and extended interrupts work, how
to create interrupt routines and how to attach the interrupt routines.

In the following sections, we will provide programming examples to initialize the Interrupt Controller and use the Interrupt
Force register to test ISR.

5.1 Disable All Interrupts

These are the codes to disable all interrupts. It is also a good practice to write a zero to any reserved pin to ensure
backward compatibility.

Code 4: IRQ Function

5.2 Interrupt Service Routine (ISR)

Both the ISR (Code 5) and extended ISR (Code 6) take on the form as shown. The only difference besides the software flow
control for different modules is the extended ISR is required to parse for the extended interrupt number and invoke their
interrupt handler respectively. Appended are the examples:

Code 5: IRQ Function

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 7 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

The extended IRQ handler provides entry points to invoke ISRs for additional modules as shown in Code 6.

Code 6: Extended IRQ Function

5.3 Attached ISR to Interrupt

Attaching ISR to the interrupt is similar for both ISR and extended ISR as shown in Code 7 and Code 8 respectively.

Code 7: Attach IRQ to Interrupt

Code 8: Attach Extended IRQ to Interrupt

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 8 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

5.4 Enable Peripheral Interrupt

Refer to the UT700 Functional Manual, the chapter of that module you are using and how to initialize the module registers.

5.5 Enable Interrupt Mask

It is proper to enable the Interrupt Mask (Code 9) last to prevent spurious interrupt. For example, if we swap the
initialization procedure in Sections 5.4 and 5.5, the spurious interrupt might happen while we are enabling the peripheral
interrupt.

Code 9: Enable Interrupt Mask

5.6 Manually Trigger Interrupt

The interrupt controller provides an Interrupt Force Register to allow users to test if their ISR is correctly attached to the
interrupt controller. If we follow the instruction from 5.1 to 5.5 with an IRQ number 2, then by setting the Interrupt Force
Register bit 2 (Code 10) will invoke the IRQ handler.

Code 10: Manually Trigger Interrupt

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 9 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

6.0 Summary and Conclusion
After going through this AN, the reader should know how to enable the Interrupt Controller, how interrupts and extended
interrupts work, how to create interrupt routines, how to attach the interrupt routines and how to test the interrupt
routines using the Interrupt Force register.

For more information about our UT700 LEON 3FT/SPARC™ V8 Microprocessor and other products please visit our website,
www.frontgrade.com or email us at https://frontgrade.com/contact-us.

https://www.frontgrade.com/
https://frontgrade.com/contact-us

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 10 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

Appendix A: Header File
This header file is designed for this application note purpose only.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 11 of 11

UT700
Enable the Interrupt Controller Module UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.1 9/29/2017

Revision History
Date Revision # Author Change Description Page #

03/03/2017 1.0.0 MTS Initial Release

09/29/2017 1.0.1 MTS Add note 1

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products
and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is
current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any
product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service
convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.

