FRONTGRADE

APPLICATION NOTE

UT700

Enable the External Memory Mapping UT700 LEON 3FT

> 11/21/2019 Version #: 1.0.3

Version #: 1.0.3

11/21/2019

Table 1: Cross Reference of Applicable Products

Product Name	Manufacturer Part Number	SMD #	Device Type	Internal PIC Number
UT700 LEON	UT700	5962-13238	Memory Controller	WQ03

1.0 Overview

This application note explains the external memory mapping of the UT700 LEON 3FT SPARCÔ Processor with particular emphasis on the relationship between the memory space shared between SRAM and SDRAM. We also explain how to use the Memory Configuration Registers 2 (**MCFG2**, refer to **Chapter 3** of the UT700 Functional Manual) to configure and associate the memories select pins to the different memory bank sizes.

With this information, the system designers can precisely design an optimized memory subsystem they need.

2.0 Memory Map Overview

Table 2 shows the UT700 addressable external memory space.

Table 2: Memory Map Overview

Memory Area	Memory Range	Memory Chip Select Pins
PROM	0x0000_0000-0x0FFF_FFF	ROM[0]
PROM	0x1000_0000-0x1FFF_FFF	ROM[1]
I/O	0x2000_0000-0x2FFF_FFFF	ĪOS
Reserved	0x3000_0000-0x3FFF_FFFF	N/A
SRAM/SDRAM	0x4000_0000-0x7FFF_FFF	RAMS[4: 0]/SDCS[1: 0]

Note: PROM size is fixed at 256MB; use only ROMS [0].

The memory space is logically partitioned into three regions: the PROM, the memory mapped I/O, and the SRAM/SDRAM. The PROM and memory mapped I/O chip select pins always decode the same address space. For the shared SRAM/SDRAM space, address decoding depends upon how the designer configures the **MCFG2. Section 3.0** describes the SRAM and SDRAM valid configurations.

11/21/2019

3.0 SRAM and SDRAM Bank Configuration Options

SRAM and SDRAM share a 1GB memory space starting from address 0x4000_0000 to 0x7FFF_FFFF. The designer may choose to implement a system that uses SRAM only, SDRAM only, or a combination of the two using the **MCFG2**.

The **DE** and **SI** bits in **MCFG2** determine which type of memory will be interfaced to the UT700; for example, deasserts **DE** enables SRAM only while asserts **SI** enables SDRAM only. Several different examples of memory interface options are shown in the following subsections. The **SZ** field in the **MCFG2** determines the size of each SRAM bank except for the area selected by **RAMS [4]**, which always maps to the upper 512MB when SDRAM is not used. Accesses using **RAMS [4]** can be stretched using the **BRDY** input pin (To increase the number of wait states). SDRAM bank sizes are determined by **DZ** and **DS** (see **MCFG2**).

The following tables show several different memory configuration options based upon the states of **SI** and **DE**, and the SRAM bank size, **SZ**, or the SDRAM bank size, **DZ**. For more information, refer to **Chapter 3** of the UT700 Functional Manual available at https://www.frontgrade.com.

4.0 SRAM Memory Map

Table 3 shows the use case of SRAM only in the shared SRAM/SDRAM space.

Table 3 shows the relationship between the **RAMS [4:0]** select pins and the different memory blank sizes. For example, in the use case of 64MB bank size, each **RAMS [X] (X** = 0 to 3) selects a 64 MB memory blank while the RAMS [4] selects the upper 512MB blank memory space. Address space from $0x5000_0000$ to $0x5FFF_FFFF$ are unused. Table 4 shows how to configure the different blank sizes using the **MCFG2** as shown in **Table 3**.

Note: Each SRAM chip select (RAMS [3:0]) selects an address range that is dependent on the MCFG2 setting.

FRONTGRADE

Version #: 1.0.3

11/21/2019

Table 3: SRAM Memory Map

	SRAM Bank Sizes				
Start Address	256MB	128MB	64MB		
0x7C00_0000					
0x7800_0000					
0x7400_0000					
0x7000_0000	RAMS[4]	RAMS[4]	RAMS[4]		
0x6C00_0000	(512 MB)	(512 MB)	(512 MB)		
0x6800_0000					
0x6400_0000					
0x6000_0000					
0x5C00_0000		RAMS[3]	UNUSED		
0x5800_0000	RAMS[1]				
0x5400_0000	10 100[2]	RAMS[2]			
0x5000_0000		10 (00[2]			
0x4C00_0000		DAME[1]	RAMS[3]		
0x4800_0000	RAMS[0]	KAMIS[1]	RAMS[2]		
0x4400_0000	10 000[0]	RAMS[0]	RAMS[1]		
0x4000_0000			RAMS[0]		

4.1.1 SRAM Bank Configuration

Table 4 shows how to configure the different memory blank sizes using the MCFG2, refer to Chapter 3 of the UT700Functional Manual for more information.

Table 4: SRAM Memory Configuration

SRAM Bank Size	SI	DE	SZ
256MB	0	0	1111b
128MB	0	0	1110b
64MB	0	0	1101b

4.2 SRAM and SDRAM Memory Map

Table 5 shows the use case of both the SRAM and SDRAM in the shared SRAM/SDRAM space. Address decoding is similar to the use case of SRAM only, except that the upper 512MB of address space is used exclusively for SDRAM. In this configuration, **RAMS [4]** is never used. **Table 6** indicates the register field settings for the three bank size options shown in **Table 5**.

Note: Use SDCS [0] for SDRAM bank select only.

Table 5: SRAM and SDRAM Memory Map

		SRAM Bank Sizes	
Start Address	256MB	128MB	64MB
0x7C00_0000			
0x7800_0000			
0x7400_0000			
0x7000_0000	SDCS[0]	SDCS[0]	SDCS[0]
0x6C00_0000	(SDRAM)	(SDRAM)	(SDRAM)
0x6800_0000			
0x6400_0000			
0x6000_0000			
0x5C00_0000		RAMS[3]	UNUSED
0x5800_0000			
0x5400_0000		RAMS[2]	
0x5000_0000			
0x4C00_0000			RAMS[3]
0x4800_0000		RAMS[1]	RAMS[2]
0x4400_0000			RAMS[1]
0x4000_0000		KAMIS[U]	RAMS[0]

Version #: 1.0.3

4.2.1 SRAM and SDRAM Bank Configuration

Table 6 shows how to configure the different memory blank sizes using the MCFG2.

Table 6: SRAM and SDRAM Memory Configuration

SRAM Bank Size	SI	DE	SZ	DZ
256MB	0	1	1111b	111b
128MB	0	1	1110b	111b
64MB	0	1	1101b	111b

For different SDRAM bank sizes, refer to Chapter 3 the UT700 Functional Manual for more information.

4.3 SDRAM Memory Map

Table 7 shows the use case of SDRAM only in the shared SRAM/SDRAM space. SDCS [0] selects the lower 512MB of address space and **SDCS [1]** selects the upper 512MB of address space. **Table 8** indicates the register field settings for the case shown in **Table 7**.

Table 7: SDRAM Memory Map

Chart Address	SDRAM Bank Sizes	
Start Address	512MB	
0x7C00_0000		
0x7800_0000		
0x7400_0000		
0x7000_0000		
0x6C00_0000	SDC5[1]	
0x6800_0000		
0x6400_0000		
0x6000_0000		
0x5C00_0000		
0x5800_0000		
0x5400_0000		
0x5000_0000	SDCS[0]	
0x4C00_0000		
0x4800_0000		
0x4400_0000		
0x4000_0000		

4.3.1 SDRAM Bank Configuration

Table 8 shows a 512MB SDRAM blank size configuration using the MCFG2.

Table 8: SDRAM Memory Configuration

SDRAM Bank Size	SI	DE	SZ	DZ
512MB	1	1	х	111B

For different SDRAM bank sizes, refer to **Chapter 3** of the UT700 Functional Manual for more information.

Note: For any SDRAM bank size smaller than 512MB, use **SDCS [0]** only.

4.3.2 UT700 and SDRAM Interface Pinout

Table 9 shows the correct pins correction between the UT700 and the SDRAM. Other pin connection between the UT700 and the SDRAM that are obvious are not shown here.

Table 9: UT700 and SDRAM Interface Pinout Assignment

UT700	SDRAM	Remarks
ADDR[14:2]	A[12:0]	Row and column addresses
ADDR[16:15]	BA[1:0]	Internal bank select
SDCS[1:0]	CSB,CSA	Chip select (Table 7) CSA and CSB from different SDRAM devices mapped on the upper and lower external banks

5.0 Summary and Conclusion

After going through this AN, the reader should know how to configure the different memory bank sizes using the **MCFG2** register and how to associate the memory select pins to the respective memory banks.

For more information about our UT700 LEON 3FT/SPARC[™] V8 Microprocessor and other products please visit our website, <u>https://www.frontgrade.com/or email us at https://www.frontgrade.com/contact-us</u>.

11/21/2019

Revision History

Date	Revision #	Author	Change Description	Page #
03/12/2017	1.0.0	MTS	Initial Release	
07/31/2017	1.0.1	MTS	Table 1	2
09/27/2017	1.0.2	MTS	Table 5	5
11/21/2019	1.0.3	MTS	Table 1, I/O address	2

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.