Adjustable Positive Voltage Regulator

VRG8660

Features

- Manufactured using Linear Technologies Space Qualified RH117 die
- Radiation performance
 - Total dose: ≥100 krad(Si), Dose rate =50-300 rad(Si)/s
 ELDRS: ≥ 50 krad(Si), Dose rate = 0.01 rad(Si)/s
- Thermal shutdown
- Output voltage adjustable: 1.25V to 37V
- 3-Terminal
- Output current: 1.5A
- Voltage reference: 1.25V ±4%
 Load regulation: 1.9% max
 Line regulation: 0.06%/V max
- Ripple rejection: >66dB
- Packaging Hermetic Ceramic
 - SMD-0.5 Surface mount
 - 3 Pads, .400"L x .296"W x .120"Ht
 - Power package
 - Weight 2 gm max
- Designed for aerospace and high reliability space applications
- Radiation Hardness Assurance Plan: DLA Certified to MIL-PRF-38534, Appendix G.

Description

The VRG8660 consists of a Positive Adjustable (RH117) voltage regulator capable of supplying 1.5Amps over the output voltage range as defined under recommended operating conditions. The VRG8660 offers excellent line and load regulation specifications and ripple rejection. The VRG8660 serves a wide variety of applications including High Efficiency Linear Regulators, Post Regulators for Switching Supplies, Constant Current Regulators, Battery Chargers and Microprocessor Supply.

The VRG8660 has been specifically designed to meet exposure to radiation environments and is configured for a SMD-0.5 SMT power package. It is guaranteed operational from -55 $^{\circ}$ C to +125 $^{\circ}$ C. Available screened to MIL-STD-883, the VRG8660 is ideal for demanding military and space applications.

Dropout (V_{IN} - V_{OUT}) decreases at lower load currents.

Adjustable Positive Voltage Regulator

VRG8660

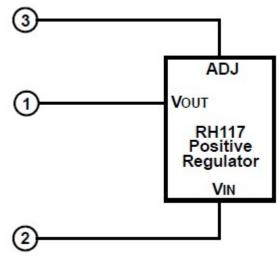


Figure 1 - Block Diagram / Schematic

Absolute Maximum Ratings

Parameter	Range	Units
Lead temperature (soldering 10 Sec) DC	300	°C
Input-Output Voltage Differential	40	V_{DC}
ESD	1.999 <u>1</u> /	KV
Operating Junction Temperature Range	-55 to +150	°C
Storage Temperature Range	-65 to +150	°C

Note:

1) Meets ESD testing per MIL-STD-883, method 3015, Class 1C.

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

Recommended Operating Conditions

Parameter	Range	Units
Output Voltage Range	1.25 to 37	V_{DC}
Case Operating Temperature Range	-55 to +125	°C

Adjustable Positive Voltage Regulator

VRG8660

Electrical Performance Characteristics

Unless Otherwise Specified -55°C \leq T_C \leq +125°C & (V_{IN}-V_{OUT}) = 5V, I_{OUT} = 0.5A

Parameter	SYM	Conditions ($P \le P_{MAX}$)	MIN	MAX	Units
Reference Voltage 1/5/	V_{REF}	$3V \le (V_{IN} - V_{OUT}) \le V_{DIFF MAX}$, $10mA \le I_{OUT} \le I_{MAX}$	1.20	1.30	V
Line Regulation 1/2/	$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	$3V \le (V_{IN} - V_{OUT}) \le V_{DIFF MAX},$ $I_{OUT} = 10mA$	-	0.06	%/V
Load Regulation 1/2/	ΔV_{OUT}	$10\text{mA} \le I_{\text{OUT}} \le I_{\text{MAX}}, V_{\text{OUT}} \le 5V$	-	60	mV
	$\overline{\Delta I_{OUT}}$	$10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}, V_{\text{OUT}} \geq 5V$	ı	1.2	%
Thermal Regulation	-	$I_{OUT} = 1.5A$, $(V_{IN} - V_{OUT}) = 13.3V$, 20ms Pulse, 20W, $T_C = +25^{\circ}C$	-	0.07	%/W
Ripple Rejection Ratio	-	$V_{OUT} = 10V$, $f = 120Hz$, $C_{ADJ} = 10\mu F$	66	-	dB
Adjustment Pin Current 1/	I_{ADJ}	-	-	100	μΑ
Adjustment Pin Current Change 1/	ΔI_{ADJ}	$10\text{mA} \leq I_{\text{OUT}} \leq I_{\text{MAX}}$	-	5	μΑ
		$3V \le (V_{IN} - V_{OUT}) \le 40V,$			
Minimum Load Current 1/3/	I_{MIN}	$(V_{IN} - V_{OUT}) = 40V$	1	5	mA
Current Limit 1/4/	т	$(V_{IN} - V_{OUT}) \le 15V$	1.50	-	А
	${ m I}_{\sf MAX}$	$(V_{IN} - V_{OUT}) = 40V$, TC = +25°C	0.30	-	
Long Term Stability 3/	$\frac{\Delta V_{OUT}}{\Delta T_{IME}}$	T _A = +125°C	1	1	%
Thermal Resistance (Junction to Case) <u>3</u> /	Θις	-	1	3	°C/W

Notes:

- 1) Specification derated to reflect Total Dose exposure to 100 krad(Si) @ +25°C
- 2) Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Measurements taken at the output lead must be adjusted for lead resistance.
- 3) Not tested. Shall be guaranteed to the specified limits.
- 4) Pulsed at <10% duty cycle @ 25°C.
- 5) Testing over 12 watts is not performed over + 25°C.

Adjustable Positive Voltage Regulator

VRG8660

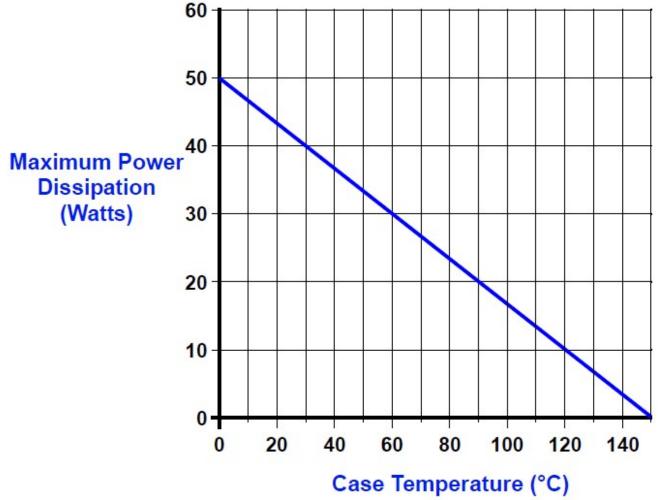


Figure 2 – Maximum Power vs Case Temperature

The maximum Power dissipation is limited by the thermal shutdown function of the regulator chip in the VRG8660. The graph above represents the achievable power before the chip shuts down. The line in the graph represents the maximum power dissipation of the VRG8660 This graph is based on the maximum junction temperature of 150°C and a thermal resistance (Θ_{JC}) of 3°C/W.

Adjustable Positive Voltage Regulator

VRG8660

VIN > 2 VRG8660 1 VOUT = VREF (1+R2/R1) + (IADJ x R2) 3 ADJ R2

Adjustable Regulator Figure 3 - Typical Applications

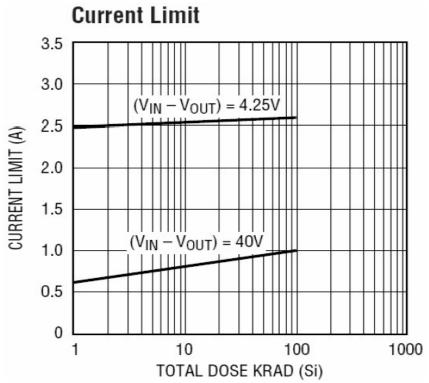


Figure 4 - Typical Current Limit

Adjustable Positive Voltage Regulator

VRG8660

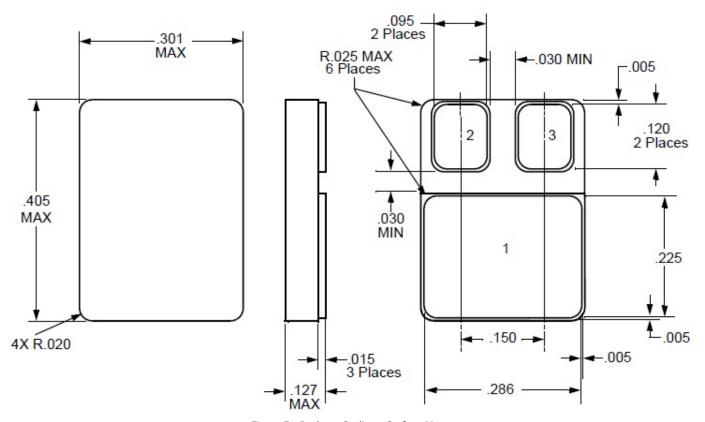


Figure 5 - Package Outline - Surface Mount

Note:

1) Package and Lid are electrically isolated from signal pads

Ordering Information

Model	DLA SMD #	Screening	Package
VRG8660 - 7	-	Commercial Flow, +25°C testing only	
VRG8660 - S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	
VRG8660- 201-1S	5962-0920601KXC	In accordance with DLA SMD	SMD-0.5 Power Pkg
VRG8660- 201-2S	5962-0920601KXA	In accordance with DEA Ship	FOWEI FKY
VRG8660- 901-1S	5962R0920601KXC	In accordance with DLA Certified RHA Program Plan to RHA Level	
VRG8660- 901-2S	5962R0920601KXA	"R", 100 krad(Si)	

Adjustable Positive Voltage Regulator

VRG8660

Revision History

Date	Revision	Change Description
03/24/2016	G	Import into CAES format
03/26/2021	I	Revised per ECN 23566.

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Long Island Inc. d/b/a CAES reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

