Features:

- +3.3V Core Power Supply
- Independent power supply for each clock bank
 - Power supply range from +2.25V to +3.6V
- 8 Output clock banks with flexible I/O signaling
 - Up to 16 LVCMOS3.3 outputs with 12mA slew-rate limited, break-before-make, buffers, or
 - Up to 16 LVCMOS2.5 outputs with 8mA slew-rate limited, break-before-make, buffers, or
 - Up to 8 standard drive LVDS outputs
- Input clock multiplication of any integer from 1 32
- PLL Operation
 - Low frequency range: 24MHz to 50MHz
 - Mid frequency range: 48MHz to 100MHz
 - High frequency range: 96MHz to 200MHz
- Input reference clock signaling and control:
 - LVCMOS3.3/LVTTL (Cold-Spared), LVDS (Cold-Spared), & Parallel Resonant Quartz Crystal
 - Reference input divide-by-1 or divide-by-2
 - Input frequency range from 2MHz to 200MHz
- Dedicated feedback Input/Output module
 - Independent feedback power supply (+3.0V to +3.6V)
 - 1-to-32 divider options with/without inverting
 - Phase control -6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 6 tU
 - FB_IN: Not affected by RST/DIV state
 - FB OUT = LOW when $\overline{RST}/DIV = LOW$ (RESET)
 - No Synchronous Output Enable (sOE) control in order to maintain PLL lock
- Output clock bank signaling and control:
 - Output frequency range from 750KHz to 200MHz
 - 1-to-32 divider options with/without inverting
 - Odd bank phase control -4, -3, -2, -1, 0, 1, 2, 3, 4 tU
 - Even bank phase control -6, -4, -2, -1, 0, 1, 2, 4, 6 tU
 - Disable HIGH, LOW, or HIGH-Z (See Table 1, page 6)
 - Synchronous Output Enable (sOE) control
 - Outputs (0-7) Q0, 1 = HIGH-Z/Tri-state when RST/DIV= LOW (RESET)
- Guaranteed reference input to output edge synchronization
- Low inherent output bank skew (e.g., SKEW = 0*tU)
 - < 50ps intrabank skew (typical)
 - < 100ps interbank skew without dividing or inverting (typ)
 - < 250ps interbank skew across divided or inverted banks (typ)
- Power dissipation can be reduced by powering down unused output banks (See Note 2, page 37)
- Temperature range:
 - HiRel: -55°C to +125°C
- Operational environment:
 - Total-dose: 100 krad (Si)
 - SEL Immune to a LET of 109 MeV-cm²/mg
 - SEU Immune to a LET of 109 MeV-cm²/mg

UT7R2XLR816

- Packaging options (1.27mm pitch, 17mm sq. body):
 - 168-CLGA
 - 168-CBGA
 - 168-CCGA
- Standard Microcircuit Drawing 5962-08243
 - QML Q and Q+
- Applications
 - High altitude avionics
 - X-ray Cargo Scanners
 - Test and Measurement
 - Networking, telecommunications and mass storage

Introduction

The UT7R2XLR816 is a low voltage, low power, clock network manager. The device features 16-outputs in 8 banks of 2. Independent power supplies for each bank (+2.25V to +3.6V) give the user great flexibility in multi- voltage systems. Outputs can be configured as LVCMOS (2.5V/8mA or 3.3V/12mA) or standard LVDS pairs. Independent output bank division and phase skewing empower the system designer to optimize output phase and frequency relationships throughout a clock network.

The skew controls enable outputs to lead or lag the reference clock while the ternary output divider control can divide the PLL oscillator frequency by any integer from 1to 32 before driving the clock out of the desired bank. Regardless of output divider settings, input and output clock edges are synchronized at start-up and whenever the device is removed from power down mode. Power down mode is controlled by the \overline{RST}/DIV ternary input which also controls input division of the reference clock. Time units for skew control (t_U) are 22.5° of the clock cycle for low and mid frequency oscillators and 45° of the clock cycle for the high frequency oscillator.

Slew rate optimization of outputs is determined by the PLL oscillator range selected and thus is controlled by the FREQ_SEL input. Output rise times decrease as higher frequency range oscillators are selected. The input reference clock can be LVCMOS/LVTTL/ LVDS or a quartz crystal. The LVCMOS/LVTTL and LVDS inputs are cold-spared. Input reference frequencies can range from 2MHz to 200MHz. Using the $\overline{\text{RST}}/\text{DIV}$ pin and FB_DS[3:0] feedback divider settings for the reference clock can be multiplied by 0.5x-32x in steps of 0.5 through a multiplication factor of 16 and integer steps for multiplication factors 17 through 32.

To provide further clock network optimization, the feedback output bank includes independent skew and division control. PLL lock is identified by the active high LOCK signal. LOCK will only become true when the REFERENCE and FB_IN clocks are stable and aligned to within t_{LOCKRES} , which is variable based on the state of the FREQ_SEL pin. At all other times, LOCK will remain LOW.

Clock outputs are deterministic in that if either the reference input clock or feedback clock are absent, the outputs will oscillate at a frequency near the midpoint of the selected PLL operating range. Test modes are available for user diagnostics. The TEST ternary input enables the test modes. When TEST is low, normal operation occurs. Floating the TEST pin to a mid-range value disables the PLL oscillators and drives the clock output banks with the REF clock input. Setting TEST high disables the PLL oscillators and drives the clock output banks with the FB_IN input.

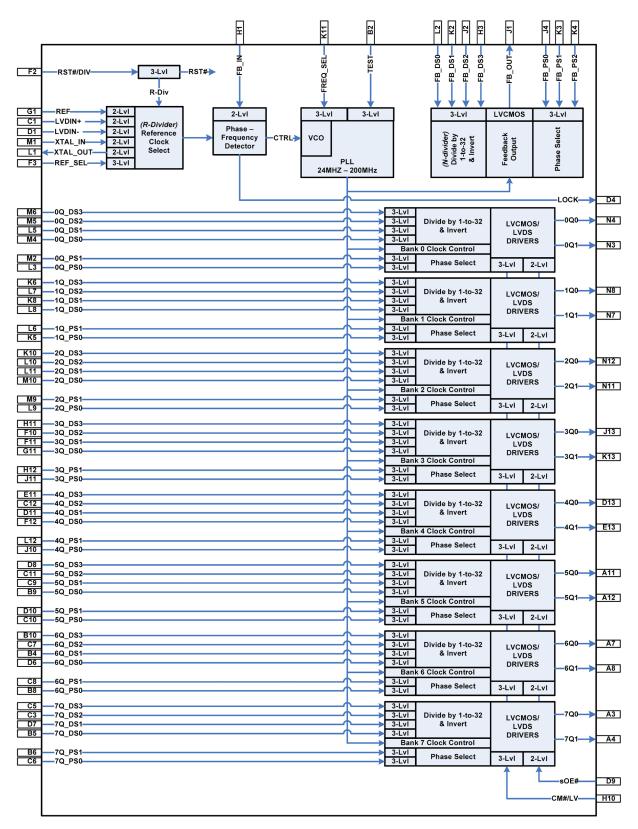


Figure 1. UT7R2XLR816 Block Diagram

UT7R2XLR816

1.0 Functional Description

The UT7R2XLR816, clock network manager, has an array of special features designed to overcome many of the clock management and clock distribution challenges common in today's high-performance electronic systems. This section of the datasheet provides an overview of the primary features within and is intended to acquaint the designer with their basic capabilities.

Although discussed in more detail below, the user should understand that many features within the UT7R2XLR816 are selected by ternary control signals. These ternary controls recognize three separate logic levels on a single pin. The L(ow) state means that the control input pin is driven below the V_{ILL} level specified in the DC electrical table of this datasheet. Conversely, a H(igh) means that the control input is driven above the V_{IHH} voltage described in the DC electrical table. While a M(id) state requires that the input pin be floated, allowing the internal resistor divider network to place the pin into a level compliant with the V_{IMM} voltage listed in the DC electrical table, or externally driven/biased to the V_{IMM} level.

1.1 Reference Clocks

The UT7R2XLR816 is capable of receiving its reference clock from one of three sources. The REF input allows for a single ended, LVTTL/LVCMOS clock source. The LVDIN+ and LVDIN- pins combine to receive an LVDS reference clock. The LVDIN+ should be driven by the positive half of the LVDS clock signal while the LVDIN- should be driven by the negative half of the LVDS clock signal. A 100Ω terminating resistor should be connected directly between the LVDIN+ and LVDIN- terminals. Finally, the XTAL_IN and XTAL_OUT terminals provide for a quartz crystal resonator reference clock input. The XTAL_IN pin is the input to the on-chip pierce oscillator and should be connected directly to one side of an external quartz crystal that is tuned to operate in the parallel resonance mode. The XTAL_OUT pin drives out the 180° phase shifted version of the reference clock received on XTAL_IN. The XTAL_OUT pin should drive the other end of the external quartz crystal resonator circuit. Reference figure 3 for an example quartz crystal oscillator circuit.

The REF, LVDIN+ and LVDIN- inputs are cold-spared. The cold-sparing capability of these reference pins make them ideal for receiving an off-board clock source that may be active while the UT7R2XLR816 is unpowered.

The UT7R2XLR816 provides a ternary reference select pin (REF_SEL) that is used to control which of the three available clock sources the UT7R2XLR816 will use as its timing reference. Since REF_SEL ensures that only one reference source can drive the internal circuitry of the UT7R2XLR816 the remaining two clock sources may be driven simultaneously allowing the REF_SEL pin to select between these reference sources. As mentioned above, REF_SEL is a ternary, or three level input. Setting REF_SEL L(ow) selects the XTAL_IN/XTAL_OUT crystal resonator source. Placing REF_SEL into a M(id) level (left floating), sets the REF input as the UT7R2XLR816 reference clock source. Finally, driving REF_SEL H(igh), enables the LVDS (LVDIN+/LVDIN-) clock source. These available REF_SEL configurations are shown in figures 2, 3 and 4.

1.2 Feedback Clock

The UT7R2XLR816 contains a dedicated feedback I/O module that is completely separate from the eight (8) output clock banks. The FB_IN feedback input can be driven directly from the FB_OUT pin, or from a digital circuit having the FB_OUT pin as its source.

The FB_IN signal connects to the internal Phase-Frequency Detector (PFD), which compares the FB_IN signal with the clock reference source as selected by the REF_SEL control. Phase shifts associated with board trace delays from routing, in-line circuitry, or intentional phase skewing within the feedback path are adjusted by the PFD to advance or delay the Phase-Locked Loop (PLL), as necessary, to ensure that the clock arriving at FB_IN is phase aligned with the selected reference clock source.

The FB_OUT is an LVCMOS3 output signal driven by the PLL. As discussed in Tables 1 and 2, the frequency and phase of the FB_OUT signal may be adjusted by the FB_DS[3:0] output divider settings and the FB_PS[2:0] phase selection settings, respectively. Both pin groups, FB_DS[3:0] and FB_PS[2:0], are ternary inputs. The FB_DS[3:0] settings are used to multiply the frequency of the internal PLL by dividing the frequency of the FB_OUT signal.

FB_OUT may be divided by any integer from 1 to 32, as-well-as inverted following the division operation. Inversion provides a 180° phase shift of the PLL from the incoming reference source, effectively synchronizing the PLL to the opposite edge of the reference clock. To ensure stable locking of the PLL and to free the output clock banks to drive the system clock, FB_OUT should always be used as the originating clock source for the FB_IN pin.

The FB_PS[2:0] feedback phase selection pins allow the FB_OUT signal to be phase shifted by -6, -4, -3, -2, -1, 0, 1, 2, 3, 4, or 6 tu (time units). The value of tu is determined by the FREQ_SEL setting and the PLL's operating frequency. Examples of tu calculation are shown in Equation 1 and Table 5. Phase shifting FB_OUT has the effect of advancing or delaying the PLL and, by extension, the nominal phase of all output clock banks. A positive phase shift (i.e. delay) in FB_OUT advances the PLL and clock output banks so they lead the reference clock by the same phase shift amount. Conversely, a negative shift (i.e., advancement) of FB_OUT causes the PLL and output clock banks to lag the reference clock source by the same amount of phase shift.

1.3 Phase-Locked Loop (PLL) and Frequency Generation

The UT7R2XLR816's PLL circuitry consists of the previously mentioned reference and feedback input clock sources, a Phase–Frequency Detector (PFD), and a Voltage-Controlled Oscillator (VCO). The voltage-controlled oscillator consists of three separate oscillators that are optimized to run in three specific frequency bands. The ternary FREQ_SEL input is used to select the appropriate VCO based upon the nominal PLL frequency required by the application. The nominal PLL frequency range selected by FREQ_SEL are 24 – 50MHz (FREQ_SEL=Low), 48 – 100MHz (FREQ_SEL=Mid) and 96 – 200MHz (FREQ_SEL=High).

The UT7R2XLR816 includes an internal reset signal to ensure that the selected VCO starts-up and the PLL establishes lock with the stable reference clock sources whenever power is applied to the device, or the device is dynamically reconfigured to select a different VCO. However, CAES recommends that dynamic reconfiguration be performed while the device is held in RESET (e.g. $\overline{RST}/DIV=Low$) to ensure a smooth re-start and avoid uncontrolled behavior from the device during the reconfiguration process.

An additional start-up feature provided by the UT7R2XLR816 is the inclusion of a PLL pre-charge circuit that places the selected VCO into a mid-band frequency of operation in the event that either one, or both, of the reference and feedback clocks are removed or drop to a frequency below f_{REFDET} . The intent of this feature is to ensure that the PLL demonstrates deterministic behavior if the device is out of reset and the PFD does not receive valid, stable, input clocks. By controlling the active VCO when the PFD does not have a valid set of input clocks to compare ensures that any active output clock bank oscillates at a manageable frequency for downstream electronics. It is also recommended that the \overline{SOE} pin be used in conjunction with the UT7R2XLR816 startup by disabling the output banks until the device has completed its PLL locktime (tLOCK) and the LOCK output is stable high.

UT7R2XLR816

When valid, stable, reference and feedback clocks are available to the PFD, it will override the pre-charge circuitry and begin to control the VCO. Although the PFD works to maintain frequency and phase alignment between the reference and FB_IN to an ideal 0ns difference, it will inform the user that the PLL is locked onto the incoming clocks when they are phase aligned to within 2ns (typical) for the low and mid VCO selections, and within 1.5ns (typical) for the high VCO. When this condition is met, the UT7R2XLR816 will drive the LOCK output high, indicating to the system the PLL is locked. When the LOCK pin is LOW, the PLL is not locked and the clock outputs may not be stable or synchronized to the reference clock source. The LOCK will de-assert LOW when the reference clock and the FB_IN are separated by greater than the defined alignments, unless the device is reset.

2.0 Device Configuration:

Table 1: Output Divider Settings

FB (N-factor) & Bank 0Q through Bank 7Q (MnQ-factor)

DS[3:0]	Output Divider	DS[3:0]	Output Divider	DS[3:0]	Output Divider
LLLL	1	MLLL	28	HLLL	23+INV
LLLM	2	MLLM	29	HLLM	24+INV
LLLH	3	MLLH	30	HLLH	25+INV
LLML	4	MLML	31	HLML	26+INV
LLMM	5	MLMM	32	HLMM	27+INV
LLMH	6	MLMH	1+INV	HLMH	28+INV
LLHL	7	MLHL	2+INV	HLHL	29+INV
LLHM	8	MLHM	3+INV	HLHM	30+INV
LLHH	9	MLHH	4+INV	HLHH	31+INV
LMLL	10	MMLL	5+INV	HMLL	32+INV
LMLM	11	MMLM	6+INV	HMLM	Note 1
LMLH	12	MMLH	7+INV	HMLH	Note 1
LMML	13	MMML	8+INV	HMML	Note 1
LMMM	14	MMMM	9+INV	НМММ	Note 1
LMMH	15	MMMH	10+INV	НММН	Note 1
LMHL	16	MMHL	11+INV	HMHL	Note 1
LMHM	17	MMHM	12+INV	НМНМ	Note 1
LMHH	18	MMHH	13+INV	НМНН	Note 1
LHLL	19	MHLL	14+INV	HHLL	DIS_LO Note 2
LHLM	20	MHLM	15+INV	HHLM	Note 1
LHLH	21	MHLH	16+INV	HHLH	DIS_HI Note 2
LHML	22	MHML	17+INV	HHML	Note 1
LHMM	23	MHMM	18+INV	ННММ	Note 1
LHMH	24	MHMH	19+INV	ННМН	Note 1
LHHL	25	MHHL	20+INV	HHHL	Note 1
LHHM	26	MHHM	21+INV	НННМ	Note 1
LHHH	27	МННН	22+INV	НННН	HI-Z Note 2

UT7R2XLR816

Notes:

- 1) These DS[3:0] settings are for engineering modes only and will default to the DS[3:0] = LLLL state when selected by a user.
- 2) These DS[3:0] settings are not available on the FB_OUT clock. If selected by the user, the FB_OUT clock will default to the DS[3:0] = LLLL state.

Table2: Feedback Bank or Output Bank Phase Select Setting ¹

FB_PS [2:0]	Skew FB	nQ_PS [1:0]	Skew EVEN Banks	Skew ODD Banks
LLL	-6t _∪	LL	-6t∪	-4t∪
LLM	-4t _U	LM	-4t _U	-3t∪
LLH	-3t∪	LH	-2t∪	-2t∪
LML	-2t _∪	ML	-1t _U	-1t∪
LMM	-1t∪	MM	Zero Skew	Zero Skew
LMH	Zero Skew	MH	+1t _U	+1t _U
LHL	+1t _U	HL	+2t∪	+2t _U
LHM	+2t∪	НМ	+4t∪	+3t _U
LHH	+3t∪	HH	+6t∪	+4t _∪
MLL	+4t∪			
MLM	+6t∪			
MLH	Note 2			
MML	Note 2			
MMM	Note 2			
MMH	Note 2			
MHL	Note 2			
MHM	Note 2			
MHH	Note 2			
HLL	Note 2			
HLM	Note 2			
HLH	Note 2			
HML	Note 2			
HMM	Note 2			
HMH	Note 2			
HHL	Note 2			
ННМ	Note 2			
HHH	Note 2			

- 1) Skew accuracy is within \pm 300ps of $n*t_U$ where "n" is the selected number of skew steps.
- 2) These skew settings are for engineering modes only and will default to the ZERO SKEW state when selected by a user.

Table 3: Calculating Output Frequency Settings 1, 2

	Output Frequency				
PLL Operating Frequency (f _{PLL})	FB_OUT	nQ [1:0]			
(N/R) * f _{reference}	(1/N) * f _{PLL}	$(1/M_{nQ}) * f_{PLL}$			

Notes:

- 1) Reference Table 1 for N-factor and MnO-factor. Reference RST/DIV pin description for R-factor.
- 2) The N-factor, R-factor, and Reference frequency should be selected such that the PLL oscillates within a range defined by the Frequency Selection shown in Table 4.

Table 4: Frequency Range Select

FREQ_SEL	Nominal PLL Frequency Range (f _{PLL})
L	24 MHz to 50 MHz
M	48 MHz to 100 MHz
Н	96 MHz to 200 MHz

Selectable output skew is in discrete increments of time unit (t_U) . The value of t_U is determined by the FREQ_SEL setting and the PLL's operating frequency (f_{PLL}) . Use the following equation to calculate the time unit (t_U) :

Equation 1.
$$t_u = \frac{1}{(f_{PLL} * MF)}$$

The f_{PLL} term, which is calculated with the help of Table 3, must be compatible with the nominal frequency range selected by the FREQ_SEL signal as defined in Table 4. The multiplication factor (MF), also determined by FREQ_SEL, is shown in Table 5. The UT7R2XLR816 output skew steps have a typical accuracy of +/- 300ps of the calculated time unit (t_U).

Table 5: MF Calculation

FREQ_SEL	MF	f_{PLL} examples that result in a t_{U} of 1.0ns
L	32	31.25 MHz
М	16	62.5 MHz
Н	8	125 MHz

2.1 Reference Clock Interface

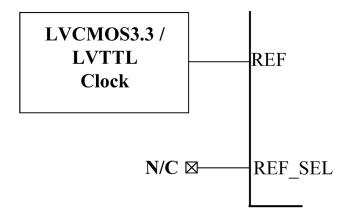


Figure 2. LVCMOS3.3/LVTTL Reference Clock Interface

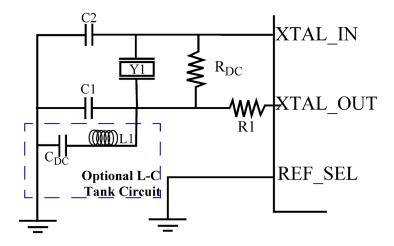


Figure 3. Parallel Resonant Crystal Reference Interface

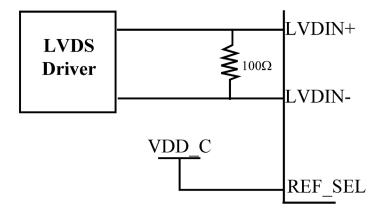


Figure 4. LVDS Reference Clock Interface

UT7R2XLR816

3.0 Operational Environment

Table 6: Operational Environment Design Specifications

Parameter	Limit	Units
Total Ionizing Dose (TID)	min = none max = 1E5	rads(Si)
Single Event Latchup (SEL) 1, 2	>109	MeV-cm ² /mg
Onset Single Event Upset (SEU) LET Threshold ³	>109	MeV-cm ² /mg
Onset Single Event Transient (SET) LET Threshold ⁴ @ 50 MHz; FREQ_SEL = L @ 24 MHz; FREQ_SEL = L	>60 >50	MeV-cm²/mg
Neutron Fluence	1.0E14	n/cm²

- 1) The UT7R2XLR816 is latchup immune to particle LETs >109 MeV-cm²/mg.
- 2) Worst case temperature and voltage of $T_C = +125$ °C, $VDD_A/C = 3.6V$, $V_{DD_nQ} = 3.6V$ for SEL.
- 3) Worst case temperature and voltage of $T_C = +25$ °C, VDD_A/C = 3.0V, $V_{DD_nQ} = 3.0$ V for SEU.
- 4) Worst case temperature and voltage of $T_C = +25$ °C, VDD_A/C = 3.0V, $V_{DD_nQ} = 2.25$ V for SET.

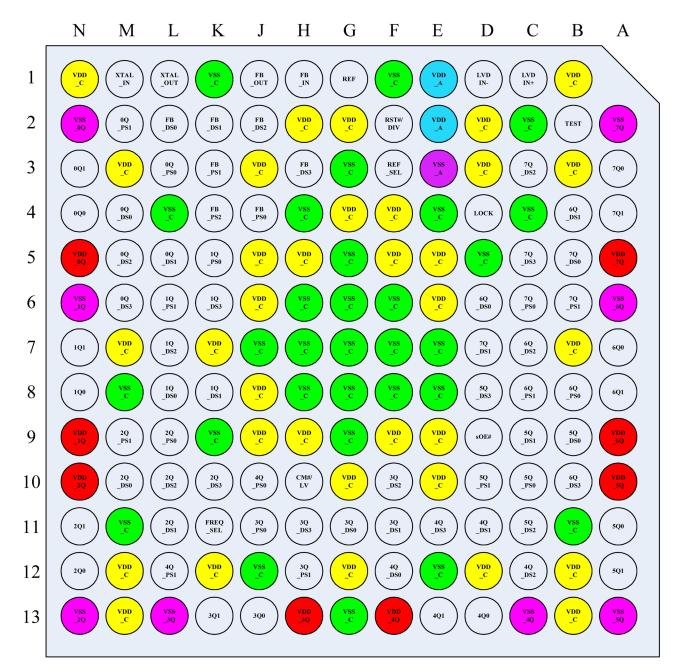


Figure 5. 168-CLGA Pinout (view looking through top of package)

4.0 Pin Description

168 CLGA Pin No.	Name	I/O	Туре	Description
				Reference Block
G1	REF	IN	COLD SPARED LVCMOS or LVTTL	Digital reference clock input. This cold spared input should be driven by a single-ended LVTTL/ LVCMOS clock source. Because REF_SEL selects which reference clock drives the PLL, this input may be actively driven when not selected, but it should never be left floating.
M1	XTAL_IN	IN	CRYSTAL	Quartz crystal resonator reference clock input. This pin is the input to the on-chip pierce oscillator. This input should be connected to the output of an external quartz crystal that is tuned to operate in the parallel mode of resonance. Because REF_SEL selects which reference clock drives the PLL, this input may be actively driven when not selected, but it should never be left floating.
L1	XTAL_OUT	OUT	CRYSTAL	Quartz crystal resonator reference clock output. This pin drives the 180° phase shifted version of the reference signal received on XTAL_IN. This pin should be connected to the input of the external quartz crystal resonator circuit.
C1	LVDIN+	IN	COLD SPARED LVDS	Positive LVDS reference clock input terminal. This cold spared input should be driven by the positive half of an LVDS clock signal. A 100Ω terminating resistor should be connected directly between this terminal and its complement LVDIN Because REF_SEL selects which reference clock drives the PLL, this input may be actively driven when not selected or left floating in the fail-safe state.
D1	LVDIN-	IN	COLD SPARED LVDS	Negative LVDS reference clock input terminal. This cold spared input should be driven by the negative half of an LVDS clock signal. A 100Ω terminating resistor should be connected directly between this terminal and its complement LVDIN+. Because REF_SEL selects which reference clock drives the PLL, this input may be actively driven when not selected or left floating in the fail-safe state.

168 CLGA Pin No.	Name	I/O	Туре	Description		
F3	REF_SEL	IN	3-LEVEL	the internal PLL. Note: The input buffers of REF_SEL are disabled LO Note: When the device is	on the reference sou on the reference sou ow.	ser reference sources to drive urces that are <i>NOT</i> selected by set mode of operation (e.g., buffers will remain enabled if
				REF_SE	L	Selected Source
				LOW		XTAL_IN
				MID		REF
			0.15.5	HIGH		LVDIN+, LVDIN-
F2	RST/DIV	IN	3-LEVEL	operation and selects the selected input reference results in the selected redrives the PLL. Holding the pin low during ensures clean UT7R2XLR behavior of the reference time to force a reset to the Note: When the device is RST/DIV = LOW), the XT REF_SEL = LOW. The following table summastropy pin. RST/DIV bin. RST/DIV LOW MID	tes as a dual function in the put reference divided in the put reference divided in the put reference source being power up and reference	N/A ÷ 2
				HIGH	Normal Operation	÷ 1

168 CLGA Pin No.	Name	I/O	Туре	Description
				Feedback Block
H1	FB_IN	IN	COLD SPARED LVCMOS or LVTTL	Feedback input clock source. This cold spared LVCMOS/LVTTL input can be driven directly from the FB_OUT pin or from a digital circuit which has the FB_OUT pin at its source.
J1	FB_OUT	OUT	LVCMOS	Feedback output clock source. This LVCMOS3.3 output is driven from the PLL. The FB_DS[3:0] and FB_PS[2:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. The FB_OUT pin should be used as the originating clock source for the FB_IN pin.
H3 J2 K2 L2	FB_DS3 FB_DS2 FB_DS1 FB_DS0	IN	3-LEVEL	Feedback output division selector and controller. These four ternary inputs are used to control the FB_OUT clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
K4 K3 J4	FB_PS2 FB_PS1 FB_PS0	IN	3-LEVEL	Feedback output phase selector. These three ternary inputs are used to control the FB_OUT phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.

168 CLGA Pin No.	Name	I/O	Туре	Description
				Clock Bank 0
N4	N4 0Q0 OUT LVCMOS			Bank 0 clock output 0. This LVCMOS output is driven from the PLL. The 0Q_DS[3:0] and 0Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW.
			LVDS	Bank 0 positive LVDS output terminal. This LVDS output is driven from the PLL. The 0Q_DS[3:0] and 0Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 0Q1 LVDS output terminal. This terminal is enabled as an LVDS output when the CM/LV pin is MID or HIGH.
N3	0Q1	OUT	LVCMOS	Bank 0 clock output 1. This LVCMOS output is driven from the PLL. The 0Q_DS[3:0] and 0Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output.
			LVDS	This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW. Bank 0 negative LVDS output terminal. This LVDS output is driven from the PLL. The 0Q_DS[3:0] and 0Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 0Q0 LVDS output terminal. This terminal is enabled as an LVDS output when the CM/LV pin is MID or HIGH.
M6 M5 L5 M4	0Q_DS3 0Q_DS2 0Q_DS1 0Q_DS0	IN	3-LEVEL	OQ bank output division selector and controller. These four ternary inputs are used to control the OQ[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
M2 L3	0Q_PS1 0Q_PS0	IN	3-LEVEL	OQ bank output phase selector. These two ternary inputs are used to control the OQ[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.
N5	V_{DD_0Q}	PWR	POWER	OQ bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.
N2	V _{SS_0Q}	PWR	POWER	0Q bank ground reference supply. 0.0V ground reference source.

168 CLGA Pin No.	Name	I/O	Туре	Description	
				Clock Bank 1	
N8	N8 1Q0 OUT LV		1Q0 OUT	LVCMOS	Bank 1 clock output 0. This LVCMOS output is driven from the PLL. The 1Q_DS[3:0] and 1Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW or MID.
			LVDS	Bank 1 positive LVDS output terminal. This LVDS output is driven from the PLL. The 1Q_DS[3:0] and 1Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 1Q1 LVDS output terminal.	
				This terminal is enabled as an LVDS output when the CM/LV pin is HIGH.	
N7	1Q1	OUT	LVCMOS	Bank 1 clock output 1. This LVCMOS output is driven from the PLL. The 1Q_DS[3:0] and 1Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW or MID.	
			LVDS	Bank 1 negative LVDS output terminal. This LVDS output is driven from the PLL. The 1Q_DS[3:0] and 1Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 1Q0 LVDS output terminal. This terminal is enabled as an LVDS output when the CM/LV pin is HIGH.	
K6 L7 K8 L8	1Q_DS3 1Q_DS2 1Q_DS1 1Q_DS0	IN	3-LEVEL	1Q bank output division selector and controller. These four ternary inputs are used to control the 1Q[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.	
L6 K5	1Q_PS1 1Q_PS0	IN	3-LEVEL	1Q bank output phase selector. These two ternary inputs are used to control the 1Q[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.	
N9	V_{DD_0Q}	PWR	POWER	Q bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.	
N6	V _{SS_0Q}	PWR	POWER	1Q bank ground reference supply. 0.0V ground reference source.	

168 CLGA Pin No.	Name	I/O	Туре	Description
				Clock Bank 2
N12	2 2Q0 OUT LVCMOS		LVCMOS	Bank 2 clock output 0. This LVCMOS output is driven from the PLL. The 2Q_DS[3:0] and 2Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is
				LOW.
			LVDS	Bank 2 positive LVDS output terminal. This LVDS output is driven from the PLL. The 2Q_DS[3:0] and 2Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 2Q1 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is MID or HIGH.
N11	2Q1	OUT	LVCMOS	Bank 2 clock output 1. This LVCMOS output is driven from the PLL. The 2Q_DS[3:0] and 2Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output.
				This terminal is enabled as an LVCMOS output when the $\overline{\text{CM}}/\text{LV}$ pin is LOW.
			LVDS	Bank 2 negative LVDS output terminal. This LVDS output is driven from the PLL. The 2Q_DS[3:0] and 2Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 2Q0 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is MID or HIGH.
K10 L10 L11 M10	2Q_DS3 2Q_DS2 2Q_DS1 2Q_DS0	IN	3-LEVEL	2Q bank output division selector and controller. These four ternary inputs are used to control the 2Q[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
M9 L9	2Q_PS1 2Q_PS0	IN	3-LEVEL	2Q bank output phase selector. These two ternary inputs are used to control the 2Q[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.
N10	V_{DD_2Q}	PWR	POWER	2Q bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.
N13	V _{SS_2Q}	PWR	POWER	2Q bank ground reference supply. 0.0V ground reference source.

168 CLGA Pin No.	Name	I/O	Туре	Description
				Clock Bank 3
J13	3Q0	OUT	LVCMOS	Bank 3 clock output 0. This LVCMOS output is driven from the PLL. The 3Q_DS[3:0] and 3Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW or MID.
			LVDS	Bank 3 positive LVDS output terminal. This LVDS output is driven from the PLL. The 3Q_DS[3:0] and 3Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 3Q1 LVDS output terminal. This terminal is enabled as an LVDS output when the CM/LV pin is HIGH.
K13	3Q1	OUT	LVCMOS	Bank 3 clock output 1. This LVCMOS output is driven from the PLL. The 3Q_DS[3:0] and 3Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW
			LVDS	or MID. Bank 3 negative LVDS output terminal. This LVDS output is driven from the PLL. The 3Q_DS[3:0] and 3Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 3Q0 LVDS output terminal. This terminal is enabled as an LVDS output when the CM/LV pin is HIGH.
H11 F10 F11 G11	3Q_DS3 3Q_DS2 3Q_DS1 3Q_DS0	IN	3-LEVEL	3Q bank output division selector and controller. These four ternary inputs are used to control the 3Q[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
H12 J11	3Q_PS1 3Q_PS0	IN	3-LEVEL	3Q bank output phase selector. These two ternary inputs are used to control the 3Q[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.
H13	V_{DD_3Q}	PWR	POWER	3Q bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.
L13	V _{SS_3Q}	PWR	POWER	3Q bank ground reference supply. 0.0V ground reference source.

168 CLGA Pin No.	Name	I/O	Туре	Description
				Clock Bank 4
D13	4Q0	OUT	LVCMOS	Bank 4 clock output 0. This LVCMOS output is driven from the PLL. The 4Q_DS[3:0] and 4Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is
				LOW.
			LVDS	Bank 4 positive LVDS output terminal. This LVDS output is driven from the PLL. The 4Q_DS[3:0] and 4Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 4Q1 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is MID or HIGH.
E13	4Q1	OUT	LVCMOS	Bank 4 clock output 1. This LVCMOS output is driven from the PLL. The 4Q_DS[3:0] and 4Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output.
				This terminal is enabled as an LVCMOS output when the $\overline{\text{CM}}/\text{LV}$ pin is LOW.
			LVDS	Bank 4 negative LVDS output terminal. This LVDS output is driven from the PLL. The 4Q_DS[3:0] and 4Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 4Q0 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is MID or HIGH.
E11 C12 D11 F12	4Q_DS3 4Q_DS2 4Q_DS1 4Q_DS0	IN	3-LEVEL	4Q bank output division selector and controller. These four ternary inputs are used to control the 4Q[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
L12 J10	4Q_PS1 4Q_PS0	IN	3-LEVEL	4Q bank output phase selector. These two ternary inputs are used to control the 4Q[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.
F13	V_{DD_4Q}	PWR	POWER	4Q bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.
C13	V _{SS_4Q}	PWR	POWER	4Q bank ground reference supply. 0.0V ground reference source.

168 CLGA Pin No.	Name	I/O	Туре	Description
				Clock Bank 5
A11	5Q0	OUT	LVCMOS	Bank 5 clock output 0. This LVCMOS output is driven from the PLL. The 5Q_DS[3:0] and 5Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW or MID.
			LVDS	Bank 5 positive LVDS output terminal. This LVDS output is driven from the PLL. The 5Q_DS[3:0] and 5Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 5Q1 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is HIGH.
A12	5Q1	OUT	LVCMOS	Bank 5 clock output 1. This LVCMOS output is driven from the PLL. The 5Q_DS[3:0] and 5Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output.
				This terminal is enabled as an LVCMOS output when the $\overline{\text{CM}}/\text{LV}$ pin is LOW or MID.
			LVDS	Bank 5 negative LVDS output terminal. This LVDS output is driven from the PLL. The 5Q_DS[3:0] and 5Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 5Q0 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is HIGH.
D8 C11 C9 B9	5Q_DS3 5Q_DS2 5Q_DS1 5Q_DS0	IN	3-LEVEL	5Q bank output division selector and controller. These four ternary inputs are used to control the 5Q[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
D10 C10	5Q_PS1 5Q_PS0	IN	3-LEVEL	5Q bank output phase selector. These two ternary inputs are used to control the 5Q[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.
A10	$V_{DD_{-}5Q}$	PWR	POWER	5Q bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.
A13	V _{SS_5Q}	PWR	POWER	5Q bank ground reference supply. 0.0V ground reference source.

168 CLGA Pin No.	Name	I/O	Туре	Description
				Clock Bank 6
A7	6Q0	OUT	LVCMOS	Bank 6 clock output 0. This LVCMOS output is driven from the PLL. The 6Q_DS[3:0] and 6Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW.
			LVDS	Bank 6 positive LVDS output terminal. This LVDS output is driven from the PLL. The 6Q_DS[3:0] and 6Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 6Q1 LVDS output terminal. This terminal is enabled as an LVDS output when the CM/LV pin is MID or HIGH.
А8	6Q1	6Q1 OUT LVCMOS		Bank 6 clock output 1. This LVCMOS output is driven from the PLL. The 6Q_DS[3:0] and 6Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW.
			LVDS	Bank 6 negative LVDS output terminal. This LVDS output is driven from the PLL. The 6Q_DS[3:0] and 6Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 6Q0 LVDS output terminal. This terminal is enabled as an LVDS output when the CM/LV pin is MID or HIGH.
B10 C7 B4 D6	6Q_DS3 6Q_DS2 6Q_DS1 6Q_DS0	IN	3-LEVEL	6Q bank output division selector and controller. These four ternary inputs are used to control the 6Q[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
C8 B8	6Q_PS1 6Q_PS0	IN	3-LEVEL	6Q bank output phase selector. These two ternary inputs are used to control the 6Q[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.
A9	V_{DD_6Q}	PWR	POWER	6Q bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.
A6	V_{SS_6Q}	PWR	POWER	6Q bank ground reference supply. 0.0V ground reference source.

168 CLGA Pin No.	Name	I/O	Туре	Description
				Clock Bank 7
А3	7Q0	OUT	LVCMOS	Bank 7 clock output 0. This LVCMOS output is driven from the PLL. The 7Q_DS[3:0] and 7Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW or MID.
			LVDS	Bank 7 positive LVDS output terminal. This LVDS output is driven from the PLL. The 7Q_DS[3:0] and 7Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the positive LVDS input terminal on the receiving device and is the complement of the 7Q1 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is HIGH.
A4	7Q1	OUT	LVCMOS	Bank 7 clock output 1. This LVCMOS output is driven from the PLL. The 7Q_DS[3:0] and 7Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal is enabled as an LVCMOS output when the CM/LV pin is LOW
				or MID.
			LVDS	Bank 7 negative LVDS output terminal. This LVDS output is driven from the PLL. The 7Q_DS[3:0] and 7Q_PS[1:0] inputs determine the divider, inverter, enable/disable, and phase settings for this output. This terminal should drive the negative LVDS input terminal on the receiving device and is the complement of the 7Q0 LVDS output terminal.
				This terminal is enabled as an LVDS output when the $\overline{\text{CM}}/\text{LV}$ pin is HIGH.
C5 C3 D7 B5	7Q_DS3 7Q_DS2 7Q_DS1 7Q_DS0	IN	3-LEVEL	7Q bank output division selector and controller. These four ternary inputs are used to control the 7Q[1:0] output clock divider, inverter, and enable control. Table 1 lists the output behavior resulting from each combination of these pins.
B6 C6	7Q_PS1 7Q_PS0	IN	3-LEVEL	7Q bank output phase selector. These two ternary inputs are used to control the 7Q[1:0] output phase alignment. Table 2 lists the output phase selections resulting from each combination of these pins.
A5	V_{DD_7Q}	PWR	POWER	7Q bank power supply. +2.5V +/-10% or +3.3V +/-0.3V power source.
A2	V _{SS_7Q}	PWR	POWER	7Q bank ground reference supply. 0.0V ground reference source.

168 CLGA Pin No.	Name	I/O	Туре	Description				
	Miscellaneous I/O							
B2	TEST	IN	3-LEVEL		out. used to enable the various test moving table lists the available test			
				TEST*	Selected Source Normal Operation			
				M	REF bypass PLL			
				Н	FB_IN bypass PLL			
K11	FREQ_SEL	IN	3-LEVEL	Note* Whenever TEST does not equal the L state, the internal oscillator will be held in reset. PLL operating frequency range selection. This ternary input selects the nominal operating frequency range in which the PLL oscillates. The following table shows the PLL frequency range selected by this input.				
				FREQ_SEL	Nominal PLL			
					Frequency Range (f _{PLL})			
				L M	24 MHz to 50 MHz 48 MHz to 100 MHz	-		
				H		_		
				П	96 MHz to 200 MHz			
D9	sOE	IN	LVCMOS or LVTTL	pins. Each clock out enabled/disabled by	input synchronously enables/disaput that is controlled by the sOE put the individual output clock. Wherel, unless individual clock banks have	oin is synchronously HIGH, $\overline{\text{SOE}}$ forces all		

168 CLGA Pin No.	Name	I/O	Туре	Descrip	otion				
H10	ŒM/LV	IN	3-LEVEL	This terr LVDS sig					
				<u>CM</u> /LV				CM/LV	
						HIGH	MID	LOW	
					0Q		LVDS	LVCMOS	
					1Q	LVDS	LVCMOS	LVCMOS	
					2Q	LVDS	LVDS	LVCMOS	
				l sk	3Q	LVDS	LVCMOS	LVCMOS	
				Banks	4Q	LVDS	LVDS	LVCMOS	
					5Q	LVDS	LVCMOS	LVCMOS	
					6Q	LVDS	LVDS	LVCMOS	
					7Q	LVDS	LVCMOS	LVCMOS	
					•		•		

168 CLGA Pin No.	Name	I/O	Туре	Description				
D4	LOCK	OUT	LVCMOS	PLL lock indication signal. This LVCMOS output informs the system that the PLL is locked onto the reference and FB_IN clocks. A HIGH state indicates that the PLL is in a locked condition. A LOW state indicates that the PLL is not locked and the outputs may not be stable or synchronized to the reference clock source. As indicated in Table 10.0, AC Electrical Characteristics for LVCMOS Outputs, the level of phase alignment between the reference and FB_IN that will cause the LOCK pin to signal a "LOCKED" condition is dependent upon the frequency range selected by the FREQ_SEL input. After the LOCK pin is asserted HIGH, indicating the reference clock and FB_IN are stable and phase aligned per the above table. The LOCK pin will de-assert to a LOW state when the Reference and FB_IN clock separate by more than the above amount. Special conditions apply when the device is placed in either test or reset mode. When in test mode, (TEST=MID or HIGH), all ternary inputs are NANDed to drive the LOCK output. When in reset mode (RST/DIV=LOW, TEST= LOW), the LOCK output is driven HIGH. These conditions are summarized in the following table.				
				RST/DIV	Test	LOCK		
				м/н	L	LOCK=HIGH if REF+FB_IN are aligned. LOCK=LOW otherwise		
				L L HIGH				
				Don't Care	м/н	LOCK=HIGH if all ternary inputs are LOW. LOCK=LOW if any ternary input is not LOW		

168 CLGA Pin No.	Name	I/O	Туре	Description
B1, B3, B7, B12, B13, D2, D3, D12, E5, E6, E9, E10, F4, F5, F9, G2, G4, G10, G12, H2, H5, H9, J3, J5, J6, J8, J9, K7, K12, M3, M7, M12, M13, N1	V _{DD_C}	PWR	POWER	Core power supply. +3.3V +/-0.3V power source. This power supply must be operated at the same potential as the analog power supply.
B11, C2, C4, D5, E4, E7, E8, E12, F1, F6, F7, F8, G3, G5, G6, G7, G8, G9, G13, H4, H6, H7, H8, J7, J12, K1, K9, L4, M8, M11	V _{SS_} c	PWR	POWER	Core ground reference supply. 0.0V ground reference source.
E1, E2	V_{DD_A}	PWR	POWER	Analog power supply. +3.3V +/-0.3V power source. This power supply must be operated at the same potential as the core power supply.
E3	V_{SS_A}	PWR	POWER	Analog ground reference supply. 0.0V ground reference source.

5.0 Absolute Maximum Ratings: 1

(Referenced to V_{SS_A/C/nQ})

Symbol	Description	Limits	Units
V _{DD_C} & V _{DD_A}	Core Power Supply Voltage	-0.3 to 4.0	V
V _{DD_0Q} through V _{DD_7Q}	Output Bank Power Supply Voltage	-0.3 to 4.0	V
V _{IN_C}	Voltage Any Core Input Pin	-0.3 to V _{DD_C} + 0.3	V
V _{IN_R}	Voltage Any Reference Input Pin	-0.3 to $V_{DD_C} + 0.3$	V
V_{IN_FB}	Voltage FB_IN Input Pin	-0.3 to $V_{DD_C} + 0.3$	V
V _{OUT_LVCMOS}	Voltage Any Clock Bank Output	-0.3 to $V_{DD_{nQ}} + 0.3$	V
V_{OUT_LVDS}	Voltage Any Clock Bank Output	-0.3 to $V_{DD_nQ} + 0.3$	V
V _O	Voltage on XTAL_OUT, FB_OUT, and LOCK Outputs	-0.3 to $V_{DD_C} + 0.3$	V
$I_{\rm I}$	DC Input Current	±10	mA
P _D ²	Maximum Power Dissipation Permitted @ $T_C = +125$ °C	5	W
T _{STG}	Storage Temperature	-65 to +150	°C
T _J ³	Maximum Junction Temperature	+150	°C
Θ _{JC-168CLGA}	Thermal Resistance, Junction to Case (168-CLGA)	5	°C/W
ESD _{HBM}	ESD Protection (Human Body Model) - Class I	750	V

Notes:

- Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating
 only, and functional operation of the device at these or any other conditions beyond limits indicated in the operational
 sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods
 may affect device reliability and performance.
- 2) Per MIL-STD-883, Method 1012, Section 3.4.1, $P_D = (T_J(max) T_C(max)) / \Theta_{JC}$
- 3) Maximum junction temperature may be increased to +175°C during burn-in and steady-static life.

6.0 Recommended Operating Conditions

Symbol	Description		Limits	Units
$V_{DD_C} \& V_{DD_A}$	Core and Analog Power Supply Vol	3.0 to 3.6	٧	
V _{DD_0Q} through V _{DD_7Q}	Output Bank Operating Voltage		2.25 to 3.6	V
V _{IN_CONTROL}	Voltage Any Configuration and Cor	ntrol Input	0 to V _{DD_C}	V
V _{IN_REF}	Voltage REF Input		0 to V_{DD_C}	V
V _{IN_XTAL}	Voltage XTAL_IN Input		0 to V _{DD_C}	V
V _{IN_LVDIN}	Voltage LVDS Input		2.4	V
V_{IN_FB}	Voltage FB_IN Input		0 to $V_{\text{DD_C}}$	V
V _{OUT_LOCK}	Voltage LOCK Output		0 to $V_{\text{DD_C}}$	V
V_{OUT_XTAL}	Voltage XTAL_OUT Output		0 to $V_{\text{DD_C}}$	V
V_{OUT_nQ}	Voltage Any LVCMOS Clock Bank C	Output	0 to V_{DD_nQ}	V
V _{OUT_LVDS}	Voltage LVDS Outputs		0.925 to 1.65	V
V _{OUT_FB}	Voltage FB_OUT Output		0 to V _{DD_C}	V
T _C	Case Operating Temperature	HiRel	-55 to +125	°C

Note:

1) When configuring an output bank for LVDS drive, the corresponding V_{DD_NQ} range is 3.0 to 3.6V.

7.0 DC Electrical Characteristics 3-Level and LVCMOS/LVTTL Inputs

($V_{DD_A/C}$ = +3.3V ± 0.3V; T_C is per the screening level ordered) *

Symbol	Description	Conditions		MIN.	MAX.	Units	
V_{IH}	High-level input voltage (REF, FB_IN, and sOE)			+2.0		V	
V _{IL}	Low-level input voltage (REF, FB_IN, and sOE)				+0.8	V	
V _{IHH} ¹	High-level input voltage			V _{DD_C} - 0.6		٧	
V _{IMM} ¹	Mid-level input voltage	Ternary Inputs		(V _{DD_C} /2) - 0.3	$(V_{DD_{-}C}/2) + 0.3$	٧	
V _{ILL} ¹	Low-level input voltage				+0.6	٧	
V _{IC+}	Positive input clamp voltage (except REF and FB_IN pin)	For input under test: I_{IN} $V_{DD_A/C} = 0.0V$	= +18mA;	+0.4	+1.5	V	
V _{IC} -	Negative input clamp voltage (all inputs)	For input under test: I_{IN} For input $V_{DD_A/C} = 0.0V$	•	-1.5	-0.4	V	
I_{CS}	Input cold spare leakage (REF, FB_IN)	For input under test: V_{II} $V_{DD_C} = 0.0V \pm 0.3V$	$_{N} = +3.6V;$	-5	+5	μА	
	Input leakage current	For input under test:	Pin: sOE	-1	+1		
I_{IL-2L}	on 2-level inputs	$V_{IN} = +3.6V \text{ or } 0.0V;$ $V_{DD_A/C} = +3.6V$	Pins: REF,FB_IN	-5	5	μΑ	
		HIGH, $V_{IN} = V_{DD_C}$			+200	μΑ	
I _{3L} ¹	3-level input DC current	MID, $V_{IN} = V_{DD_C}/2$		-50	+50	μΑ	
		LOW, $V_{IN} = V_{SS_C}$		-200	-	μΑ	
C _{IN-2L} ²	Input pin capacitance (2-level inputs)	REF, FB_IN		6 (typical)		pF	
		f= 1MHz @ 0V	sOE	9 (ty	9 (typical)		
C _{IN-3L} ²	Input pin capacitance (3-level inputs)	f= 1MHz @ 0V		12 (t	ypical)	pF	

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) These inputs are normally wired to V_{DD_C} , V_{SS_C} , or left unconnected. Internal termination resistors bias unconnected inputs to $V_{DD_C}/2 \pm 0.3V$.
 - Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance.
 Capacitance is measured between the designated terminal and V_{SS_C} at a frequency of 1MHz and a signal amplitude of 50mV rms maximum.

7.1 DC Electrical Characteristics LVDS Inputs ¹

 $(V_{DD_A/C} = +3.3V \pm 0.3V; T_C \text{ is per the screening level ordered}) *$

Symbol	Description	Conditions	MIN.	MAX.	Units
I_{LVDIN}	Input leakage current	For input under test $V_{IN} = +3.6V$ or 0.0V; $V_{DD_C} = +3.6V$	-15	+15	μΑ
V _{TH} ²	Differential input high threshold	$V_{CM} = +1.2V$	V _{CM} +0.1		V
V _{TL} ²	Differential input low threshold	$V_{CM} = +1.2V$		V _{CM} -0.1	V
V _{CMR} ⁴	Common mode voltage range	V _{ID} = 200mV peak-to-peak	0.1	2.3	V
I _{CS}	Input cold spare leakage	For input under test $V_{IN} = +3.6V$; $V_{DD_C} = 0.0V$	-5	+5	μΑ
V _{IC} -	Negative input clamp voltage	For Input Under Test: $I_{IN} = -18$ mA	-1.5	-0.4	V
C _{LVDIN} ³	Input pin capacitance	f= 1MHz @ 0V	7	,	pF

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) LVDS compatible input pins include: LVDIN+, LVDIN-.
 - 2) Guaranteed by characterization, and functionally tested.
 - 3) Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance. Capacitance is measured between the designated terminal and V_{SS_C} at a frequency of 1MHz and a signal amplitude of 50mV rms maximum.
 - 4) Guaranteed by characterization, but not tested.

7.2 DC Electrical Characteristics XTAL_IN Input

 $(V_{DD_A/C} = +3.3V \pm 0.3V; T_C \text{ is per the screening level ordered}) *$

Symbol	Description	Conditions	MIN.	MAX.	Units
V_{IH}	High-level input voltage		0.55 * V _{DD_C}		٧
V _{IL}	Low-level input voltage			0.35 * V _{DD_C}	٧
I _{XTAL_IN}	Input leakage current	For input under test $V_{IN} = +3.6V$ or 0.0V; $V_{DD_C} = +3.6V$	-1	+1	μΑ
V _{IC+}	Positive input clamp voltage	For input under test: I_{IN} = +18mA; V_{DD_C} = 0.0V	+0.4	+1.5	V
V _{IC} -	Negative input clamp voltage	For Input Under test: $I_{IN} = -18\text{mA}$	-1.5	-0.4	V
C _{XTAL_IN} ¹	Input pin capacitance	f = 1MHz @ 0V	1	0	pF

Note:

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance.
 Capacitance is measured between the designated terminal and V_{SS_C} at a frequency of 1MHz and a signal amplitude of 50mV rms maximum.

8.0 DC Electrical Characteristics LVCMOS3.3 Outputs ¹

 $(V_{DD_nQ} = +3.3V \pm 0.3V; V_{DD_A/C} = +3.3V \pm 0.3V; T_C \text{ is per the screening level ordered}) *$

Symbol	Description	Conditions		MIN.	MAX.	Units
	Low-level output voltage	I _{OL} = 12mA (Pins: nQ[1:0]; FB_OUT)	T_C = Room, Cold		0.4	V
V_{OL}		T _C :	$T_C = Hot$		0.6	, v
	voltage	$I_{OL} = 2mA \text{ (Pin: LOCK)}$		1	0.4	V
V _{OH}	High-level output	$I_{OH} = -12mA \text{ (Pins: nQ[1:0]; FB_OUT)}$		2.4		V
VOH	voltage	I _{OH} = -2mA (Pin: LOCK)		2.4		٧
I_{OZ}	Output three-state current	$nQ1 \text{ or } nQ0 = 0V \text{ or } V_{DD_nQ}, V_{DD_nQ} = +3.6V$		-10	+10	μΑ
C _{OUT} ²	Output pin capacitance	f = 1MHz @ 0V			13	pF

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) LVCMOS3.3 compatible output pins include: FB_OUT, LOCK, 0Q[1:0], 1Q[1:0], 2Q[1:0], 3Q[1:0], 4Q[1:0], 5Q[1:0], 6Q[1:0], 7Q[1:0].
 - 2) Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance. Capacitance is measured between the designated terminal and V_{SS_nQ} at a frequency of 1MHz and a signal amplitude of 50mV rms maximum.

8.1 DC Electrical Characteristics LVCMOS2.5 Outputs¹

 $(V_{DD_{-}nQ} = +2.5V \pm 10\%; V_{DD_A/C} = +3.3V \pm 0.3V; T_{C}$ is per the screening level ordered) *

Symbol	Description	Conditions	MIN.	MAX.	Units	
V _{OL}	Low-level output	$I_{OL} = 6mA; V_{DD_nQ} = +2.25V; V_{DD_A/C} = 3.3V$			0.4	V
VOL	voltage Pins: nQ[1:0]	$I_{OL} = 8mA; V_{DD_nQ} = +2.375V; V_{DD_nQ}$	_{A/C} =3.3V		0.4	V
	I _{Ot}	$I_{OH} = -6mA; V_{DD_nQ} = +2.25V;$	T_C = Room, Cold	2.0		
.,	LPala laval autout	V _{DD_A/C} =3.3V	$T_C = Hot$	1.9		V
V _{OH}	High-level output voltage Pins: nQ[1:0]	$I_{OH} = -8mA; V_{DD_nQ} = +2.375V;$	T_C = Room, Cold	2.0		
	voitage i iiis. HQ[1:0]	V _{DD_A/C} =3.3V	T _C = Hot	1.9		V
C _{OUT} ²	Output pin capacitance	f = 1MHz @ 0V		1	3	pF

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) LVCMOS2.5 compatible output pins include: 0Q[1:0], 1Q[1:0], 2Q[1:0], 3Q[1:0], 4Q[1:0], 5Q[1:0], 6Q[1:0], 7Q[1:0].
 - 2) Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance. Capacitance is measured between the designated terminal and V_{SS_nQ} at a frequency of 1MHz and a signal amplitude of 50mV rms maximum.

8.2 DC Electrical Characteristics LVDS Outputs 1,2

 $(V_{DD_nQ} = +3.3V \pm 0.3V; V_{DD_A/C} = +3.3V \pm 0.3V; T_C \text{ is per the screening level ordered}) *$

Symbol	Description	Conditions	MIN.	MAX.	Units
V _{OL}	Low-level output voltage	$R_L = 100\Omega$ (see figure 9)	0.925		V
V _{OH}	High-level output voltage	$R_L = 100\Omega$ (see figure 9)		1.650	V
V _{OD} ²	Differential output voltage	$R_L = 100\Omega$ (see figure 9)	250	400	mV
ΔV _{OD} ²	Change in magnitude of V_{OD} for complementary output states	$R_L = 100\Omega$ (see figure 9)		35	mV
V _{OS}	Offset voltage	$R_L = 100\Omega$, $(V_{OS} = \frac{V_{Oh} + V_{Ol}}{2})$ (see figure 9)	1.125	1.450	٧
ΔVos	Change in magnitude of V _{OS} for complementary output states	$R_L = 100\Omega$ (see figure 9)		25	mV
I _{OS}	Output short circuit current	$nQ1 \text{ or } nQ0 = V_{SS_nQ} \text{ or } V_{DD_nQ}$ $V_{DD_nQ} = +3.6V$	-10	10	mA
I _{OZ}	Output three-state current	$nQ1 \text{ or } nQ0 = V_{SS_nQ} \text{ or } V_{DD_nQ},$ $V_{DD_nQ} = +3.6V$	-10	+10	μА
C _{OUT} ³	Output pin capacitance	f = 1MHz @ 0V	13		pF

Notes:

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) LVDS compatible output pins include: 0Q[1:0], 1Q[1:0], 2Q[1:0], 3Q[1:0], 4Q[1:0], 5Q[1:0], 6Q[1:0], 7Q[1:0].
 - 2) All voltages are referenced to V_{SS} except for differential voltages.
 - 3) Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance. Capacitance is measured between the designated terminal and V_{SS_nQ} at a frequency of 1MHz and a signal amplitude of 50mV rms maximum.

8.3 DC Electrical Characteristics XTAL_OUT Output

 $(V_{DD_A/C} = +3.3V \pm 0.3V; T_C \text{ is per the screening level ordered}) *$

Symbol	Description	Conditions		MIN.	MAX.	Units
Vo	Low-level output voltage	evel output voltage $I_{OL} = 16mA$ $T_{C} = Room, Cold$ $T_{C} = Hot$		-	0.4	V
V OL	V _{OL} Low-level output voltage				0.5	'
V _{OH}	High-level output voltage	$I_{OH} = -16mA$		2.4		V
C _{OUT} ¹	Output pin capacitance	f = 1MHz @ 0V		15		pF

Note

* For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.

Capacitance is measured for initial qualification and when design changes may affect the input/output capacitance.
 Capacitance is measured between the designated terminal and V_{SS_C} at a frequency of 1MHz and a signal amplitude of 50mV rms maximum.

9.0 AC Input Electrical Characteristics

 $(V_{DD_A/C} = +3.3V \pm 0.3V; T_C \text{ is per the screening level ordered}) *$

Symbol	Description	Condition		MIN.	MAX.	Unit
t _R , t _F ²	Input rise/fall time	VIH(min)-VIL(max)	Pins: REF, FB_IN		20	ns
UR, UF	input rise/rail time	VTH(min)-VTL(max)	Pins: LVDIN+, LVDIN-		20	115
t _{PWC} 3, 4	Input clock pulse width	HIGH or LOW; REF		2		ns
t _{PER} 3, 5, 6, 7	Input clock period	1÷f _{REF}	1÷f _{REF}		500	ns
f _{REFDET} 8	Ref clock detector frequency	FREQ_SEL = LOW; RST/D	FREQ_SEL = LOW; RST/DIV = HIGH;		100	KHz
		FREQ_SEL = LOW; \overline{RST}/D	IV = HIGH	2.0	50	MHz
		FREQ_SEL = LOW; RST/DIV = MID		4.0	100	MHz
f _{REF} 3, 5, 6	Reference clock	FREQ_SEL = MID; RST/DI	V = HIGH	2.0	100	MHz
I _{REF} 3, 3, 5	frequency	FREQ_SEL = MID; RST/DI	V = MID	4.0	200	MHz
		FREQ_SEL = HIGH; RST/D	IV = HIGH	3	200	MHz
		FREQ_SEL = HIGH; RST/D	DIV = MID	6	200	MHz
t _{RESET}	Reset duration	Reference clock and all con and valid while RST/DIV is	•	400		ns

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) Reference Figure 8 for clock output loading circuit that is equivalent to the load circuit used for all AC testing. The input waveform used to test these parameters is shown in Figure 7.
 - 2) Characterized in lab through functional testing.
 - 3) Guaranteed by functional testing except where characterized.
 - 4) For REF_SEL = HIGH, this parameter is guaranteed by characterization, but not tested. For REF_SEL=LOW, this parameter is not applicable.
 - 5) Although the input reference frequencies are defined as-low-as 2MHz, the N and R dividers must be selected to ensure the PLL operates from 24MHz-50MHz when FREQ_SEL = LOW, 48MHz-100MHz when FREQ_SEL = MID, and 96MHz-200MHz when FREQ_SEL = HIGH.
 - 6) XTAL_IN is characterized for crystal operation over V_{DD_C} and temperature corners using 2MHz, 24MHz, 48MHz, and 66.667MHz crystals which were configured in accordance with figure 3.
 - 7) For REF_SEL = LOW, this parameter is guaranteed by laboratory characterization through functional testing of the XTAL_IN pin with a digital input clock signal at 2MHz and 62.5MHz in accordance with the test waveform in figure 7C.
 - 8) Maximum REF frequency in which the UT7R2XLR816 will ignore the REF input and place the PLL into a pre-charge oscillator state.

10.0 AC Electrical Characteristics for LVCMOS Outputs

(V_{DD_nQ} = +2.5V ±10% or +3.3V ± 0.3V; $V_{DD_A/C}$ = +3.3V ± 0.3V; T_C is per the screening level ordered) *

Symbol	Description	Condition		MIN.	MAX.	Unit
f _{OR} ⁶	Output frequency range			0.75	200	MHz
VCO _{LR} ⁶	VCO lock range			24	200	MHz
t _{PD0} ^{2, 5}	Reference to FB_IN propagation delay	$V_{DD_C} = +3.3V; T_C = Roc$	om Temperature	-150	+150	ps
t _{n∗tu} ⁷	Accuracy of phase selection time units	Skew accuracy from any output bank configured t skew steps, without divis	to a valid number of	(n*t _∪ -300)	(n*t _U +300)	ps
t _{PART} ⁵	Part-part skew	Skew between the outputs of any two devices under identical settings and conditions (V_{DD_nQ} , $V_{DD_A/C}$, temp, air flow, frequency, etc.).			250	ps
		6 1 400 MH	Figure 8B	45	55	
		fout ≤ 100 MHz,	Figure 8C (Note 5)	45	55	%
. 5	Output duty cycle	measured at (V _{DD_nQ})/2	Figure 8A (Note 5)	45	55	
t _{ODCV-LVCMOS} ⁵	LVCMOS Outputs	6	Figure 8B	40	60	
		fout > 100 MHz,	Figure 8C (Note 5)	40	60	%
		measured at (V _{DD_nQ})/2	Figure 8A (Note 5)	40	60	
	Output high time pulse width	Measured at 0.5* $V_{DD_nQ} = 3.3V$ Outputs loaded per Fig. 8A $V_{DD_nQ} = 2.5V$ Outputs loaded per Fig. 8A $V_{DD_nQ} = 2.5V$ Outputs loaded per Fig. 8A $V_{DD_nQ} = 3.3V$ Outputs loaded per Fig. 8B	V _{DD_nQ} = 3.3V Outputs loaded per	1.5		
t _{PWH} ⁵			Outputs loaded per	1.5		
LPWH 3			1.5		ns	
			V _{DD_nQ} = 2.5V Outputs loaded per Fig. 8B	1.5		
			V _{DD_nQ} = 3.3V Outputs loaded per Fig. 8A	2		
+ 5	Output low time pulse	Measured at 0.5*	V _{DD_nQ} = 2.5V Outputs loaded per Fig. 8A	2		
t _{PWL} ⁵	width	V_{DD_nQ} - 0.5V f_{REF} = 200MHz	V _{DD_nQ} = 3.3V Outputs loaded per Fig. 8B	2		ns
			V _{DD_nQ} = 2.5V Outputs loaded per Fig. 8B	2		
t _{LOCK} ³	PLL lock time	RST/DIV = MID or HIGH HIGH	to LOCK = STABLE		1.0	ms
	LOCK Pin Resolution	FREQ_SEL = LOW and M	IID		0.9	ns
t _{LOCKRES} 4, 5	Maximum phase difference between reference and FB_IN to maintain LOCK	FREQ_SEL = HIGH			0.5	ns

UT7R2XLR816

Symbol	Description	Condition		Min.	Max.	Unit
		Measured as transition time from	FREQ_SEL=LOW or MID		3.0	ns
t _{ORISE} -	LVCMOS output rise	$V_{OL(max)}$ to $V_{OH(min)}$ for $V_{DD_A/C} = 3.3V$; $V_{DD_nQ} = 2.25V$; $\overline{CM}/LV = LOW$ $f_{REF} = 1MHz$	FREQ_SEL=HIGH		2.75	ns
LVCMOS ⁵	time	Measured as transition time from	FREQ_SEL=LOW or MID		1.25	ns
		$V_{OL\ (max)}$ to $V_{OH(min)}$ for $V_{DD_A/C} = 3.3V$; $V_{DD_nQ} = 3.6V$; $\overline{CM}/LV = LOW$ $f_{REF} = 1MHz$	V= LOW FREQ_SEL=HIGH		1.0	ns
		Measured as transition time from V _{OH(min)}	FREQ_SEL=LOW or MID		2.25	ns
t _{ofall} -	LVCMOS output fall	to $V_{OL(max)}$ for $V_{DD_A/C} = 3.3V$; $V_{DD_nQ} = 2.25V$; $\overline{CM}/LV = LOW$ $f_{REF} = 1MHz$	FREQ_SEL=HIGH		2.0	ns
LVCMOS 5	time	Measured as transition time from $V_{\text{OH(min)}}$	FREQ_SEL=LOW or MID		2.0	ns
	Figure 8A	to $V_{OL(max)}$ for $V_{DD_A/C} = 3.3V$; $V_{DD_nQ} = 3.6V$; $\overline{CM}/LV = LOW$ $f_{REF} = 1MHz$	FREQ_SEL=HIGH		1.75	ns

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C Per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) All outputs are equally loaded. See figure 8B.
 - 2) t_{PD0} is measured at 1.5V for $V_{DD\ C}$ = +3.3V with REF rise/fall times of 1ns between 0.8V-2.0V.
 - 3) t_{LOCK} is the time that is required before outputs synchronize to the reference input as determined by the phase alignment between the selected reference and FB_IN. This specification is valid with stable input reference clock and power supplies that are within normal operating limits.
 - 4) The lock detector circuit will monitor the phase alignment between the selected reference input and FB_IN. When the phase separation between these two inputs is greater than the amount listed, the LOCK pin will drop low signaling that the PLL is out of lock.
 - 5) Guaranteed by characterization, but not tested.
 - 6) Guaranteed by functional testing.
 - 7) The time unit t_U is calculated by equation 1 using the PLL operating frequency (see Table 3) and the multiplication factor determined by the state of the FREQ_SEL pin (see Table 5). Valid phase selection steps for each output clock bank are identified in Table 2.

10.1 AC Electrical Characteristics for LVDS Outputs

 $(V_{DD_nQ} = +3.3V \pm 0.3V; V_{DD_A/C} = +3.3V \pm 0.3V; T_C \text{ is per screening level ordered}) *$

Symbol	Description	Condition	MIN.	MAX.	Unit
t _{n*tu} ^{3, 4}	Accuracy of phase selection time units	Skew accuracy from FB_OUT to any output bank configured to a valid number of skew steps, without division or inversion.	(n*t _∪ -300)	(n*t _U +300)	ps
t _{PART} ²	Part-part skew	Skew between the outputs of any two devices under identical settings and conditions (V_{DD_nQ} , $V_{DD_A/C}$, temp, air flow, frequency, etc).		250	ps
t _{ODCV-LVDS} ²	Output duty cycle	fout ≤ 100 MHz, measured at VOS (Figure 10)	48	52	%
LODCV-LVDS	LVDS Outputs	fout > 100 MHz, measured at VOS (Figure 10)	45	55	%
t _{ORISE-LVDS} ²	LVDS output rise time	Measured as transition time between 20% V_{DIFF} and 80% V_{DIFF} (Figure 10) $\overline{CM}/LV=HIGH$; $f_{REF}=1MHz$		1.25	ns
tofall-lvds ²	LVDS output fall time	Measured as transition time between 80% V_{DIFF} and 20% V_{DIFF} (Figure 10) \overline{CM}/LV =HIGH; f_{REF} =1MHz		1.25	ns

Notes:

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) All outputs are equally loaded. See figure 9.
 - 2) Guaranteed by characterization, but not tested.
 - 3) The time unit t_U is calculated by equation 1 using the PLL operating frequency (see Table 3) and the multiplication factor determined by the state of the FREQ_SEL pin (see Table 5). Valid phase selection steps for each output clock bank are identified in Table 2.
 - 4) Guaranteed by characterization and testing with LVCMOS buffers.

11.0 Recommended Quartz Crystal Specifications

(Parallel Resonant Mode; Fundamental and Third Overtone)

Description	Conditions	MIN.	MAX.	Units
Frequency range	Fundamental	2.0		MHz
Trequency range	Third Overtone		50	141112
Frequency tolerance		User I	Defined	ppm
Frequency to temperature stability		-100	+100	ppm
Aging		-5	+5	ppm/
Agilig			13	year
Load capacitance	Parallel load	10	30	pF
Shunt capacitance	Frequency dependent		7	pF
Equivalent series resistance (ESR)	Frequency dependent	25	3000	Ω
Drive level			1.0	mW

12.0 Power Dissipation Characteristics

(Unless otherwise noted, V_{DD_nQ} = +2.5V ±10% or +3.3V ± 0.3V; $V_{DD_nA/C}$ = +3.3V ±0.3V; T_C is per the screening level ordered) *

Symbol	Description	Conditions		MIN.	MAX.	Units
		$V_{DD_A/C} = +3.6V$; $\overline{sOE} = HIGH$;	T_C = Room, Cold		+1.40	mA
\mathbf{I}_{DDRSTC}	RESET Core Power Supply Current	FB_IN = FB_OUT; REF, LVDIN+, LVDIN-, XTAL_IN, RST/DIV, FREQ_SEL, & TEST = LOW; All other inputs are floated; Outputs are not loaded	T _C = Hot		+1.40	mA
SI_{DD_C}	Standby Core Power Supply Current	$V_{DD_A/C} = +3.6V$; \overline{sOE} , \overline{RST}/DIV , \overline{FRE} $\overline{FB}_IN = \overline{FB}_OUT$; \overline{REF} , \overline{LVDIN} , \overline{LVI} \overline{CM}/LV , and $\overline{TEST} = \overline{LOW}$; All other inputs are floated; Outputs	DIN-, XTAL_IN,		+170	mA
	100_A/C 10101/1101/221 112011/		REF = 2MHz PLL = 24MHz		+40	
AI_{DD_C}	Active core power supply current	LVDIN-, XTAL_IN, FREQ_SEL, and TEST = LOW; All other inputs are floated; Outputs are not loaded LVCMOS3.3 Outputs REF = 2MHz nO[1:	REF = 200MHz PLL = 200MHz		290	mA
AI _{DD_nQ33}	Dynamic output bank	LVCMOS3.3 Outputs REF = 2MHz	nQ[1:0] = 24MHz		12	mA/
(Notes 1,2)	supply current	and 200MHz; $\overline{SOE} = LOW$; $V_{DD_nQ} = +3.6V$; $C_L = 40$ pF/output;	nQ[1:0] = 200MHz		23	Bank
AI _{DD_nQ25} (Notes 1,2)	Dynamic output bank supply current	LVCMOS2.5 Outputs REF = 2MHz and 200MHz; $\overline{\text{SOE}}$ = LOW; V_{DD_nQ} =	nQ[1:0] = 24MHz		8.75	mA/ Bank
(Notes 1,2)	Supply current	+2.75V; $C_L = 40pF/output$;	nQ[1:0] = 200MHz		17	
AI _{DD_CLVDS}	Core power supply current when LVDS	$V_{DD_A/C} = V_{DD_nQ} = +3.6V;$ $\overline{RST}/DIV = \overline{CM}/LV = HIGH; FB_IN$ $= FB_OUT; \overline{SOE}, FREQ_SEL, and$	REF = 2MHz PLL = 24MHz nQ[1:0] = 24MHz		75	
(Notes 2,3)	output banks are running	TEST = LOW; All other ternary inputs are floated; $C_L = 40 pF/output;$ $R_L = 100 \Omega$ Differential	REF = 200MHz PLL = 200MHz nQ[1:0] = 200MHz		340	mA
AI_{DD_nQLVDS}	Dynamic output bank	LVDS Outputs; CM/LV = HIGH;	nQ[1:0] = 24MHz		0.5	mA/
(Notes 2,3)	supply current	V_{DD_nQ} = +3.6V; C_L = 40pF/output; R_L = 100 Ω Differential	nQ[1:0] = 200MHz		3.5	Bank
AI _{DD_XTAL} (Note 4)	Dynamic supply current from XTAL	XTAL_OUT Output $V_{DD_C} = +3.6V$; XTAL_IN = V_{DD_C} to	REF = 2MHz PLL = 24MHz		1.5	mA
(NOLE T)	interface	V_{SS_R} ; REF_SEL = LOW; \overline{RST}/DIV = HIGH C _L = 40pF	REF = 50MHz PLL = 50MHz		2.0	IIIA

UT7R2XLR816

- * For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.
 - 1) When measuring the dynamic supply current, all outputs are disconnected from the equivalent test load defined in figure 8B.
 - 2) To reduce power consumption for the device, the user may tie the unused V_{DD_nQ} pins to V_{SS_nQ}.
 - 3) When measuring, use Figure 9.
 - 4) Guaranteed by characterization, but not tested.

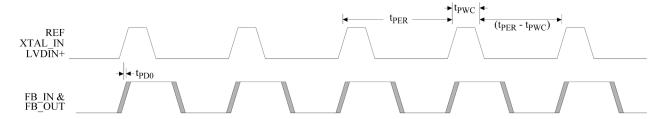


Figure 6a. Reference and Feedback Timing Diagrams

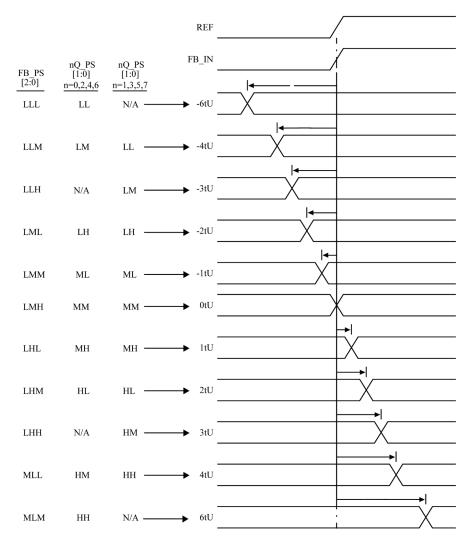


Figure 6b. Phase Select Time Unit Step Relationships

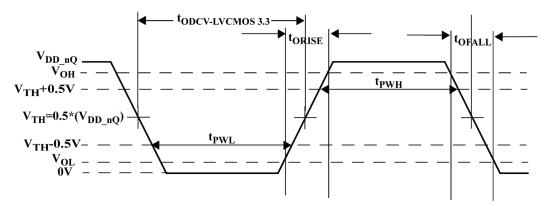


Figure 7A. +3.3V LVCMOS3.3/LVTTL Output Waveform

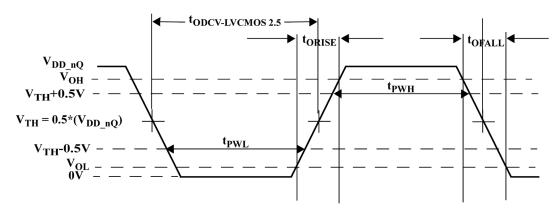


Figure 7B. +2.5V LVCMOS2.5/LVTTL Output Waveform

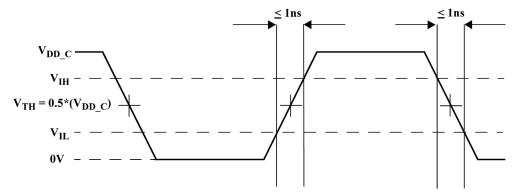


Figure 7C. LVCMOS3.3/LVTTL and XTAL_IN Input Test Waveform

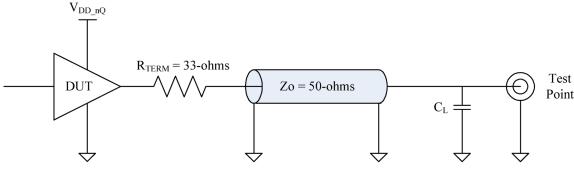


Figure 8A. Series Terminated LVCMOS/LVTTL Test Circuit

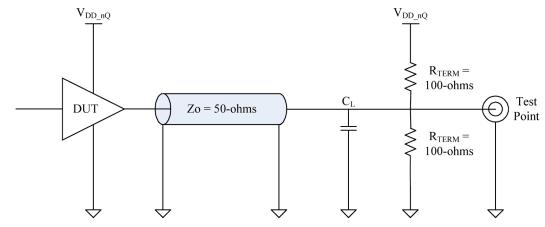


Figure 8B. Thevenin Terminated LVCMOS/LVTTL Test Circuit

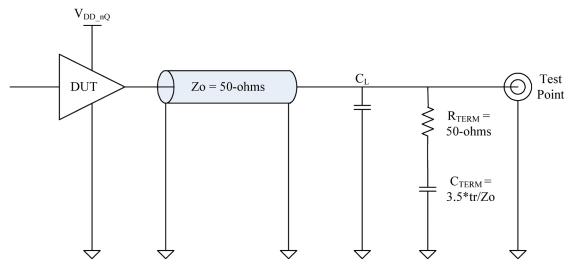


Figure 8C. AC Terminated LVCMOS/LVTTL Test Circuit

Note:

1) For ATE test load, C_L=40pF. For lab characterization, C_L=15pF

UT7R2XLR816

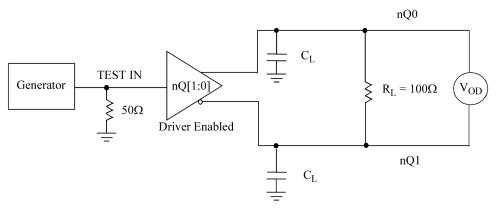


Figure 9. LVDS Driver V_{OD} and V_{OS} Test Circuit or Equivalent

Note:

1) For ATE test load, C_L =40pF. For lab characterization, C_L =15pF

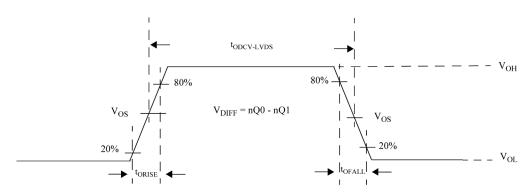


Figure 10. LVDS Driver Transition Time Waveform

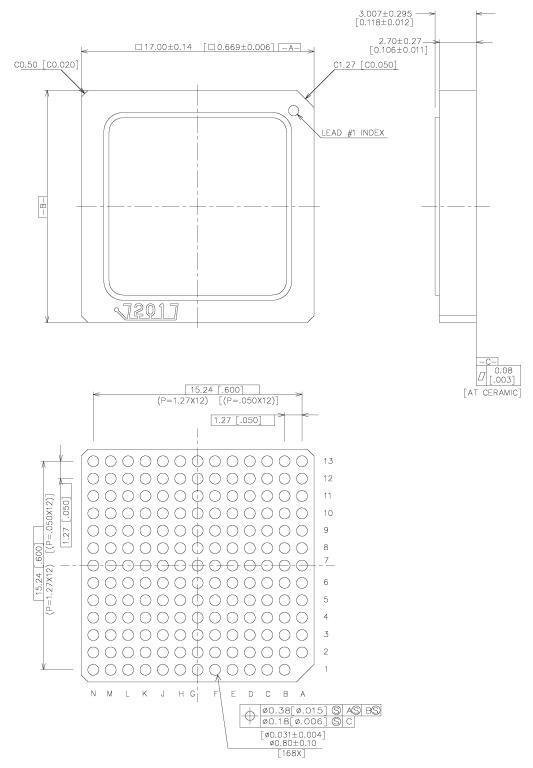


Figure 11. 168-CLGA Package

- 1) Seal ring is connected to VSS.
- 2) Units are in millimeters and [inches].

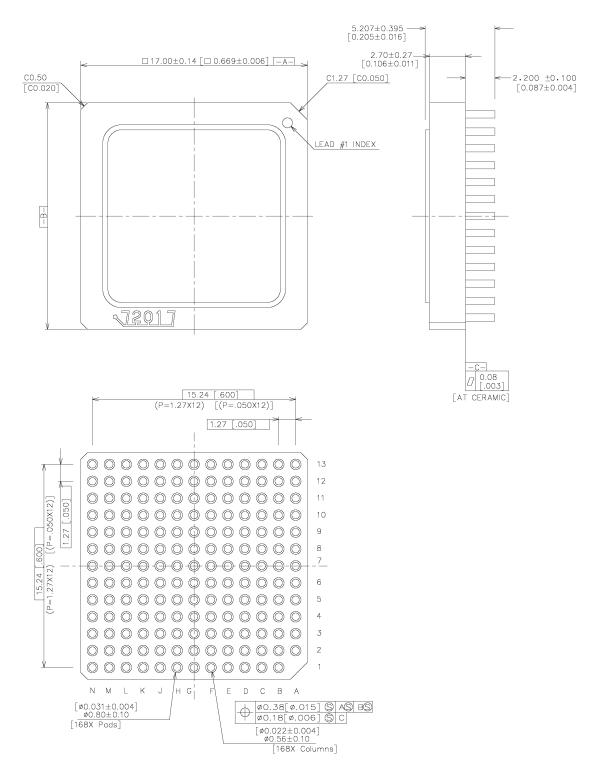


Figure 12. 168-CCGA Package

- 1) Seal ring is connected to VSS.
- 2) Units are in millimeters and [inches].

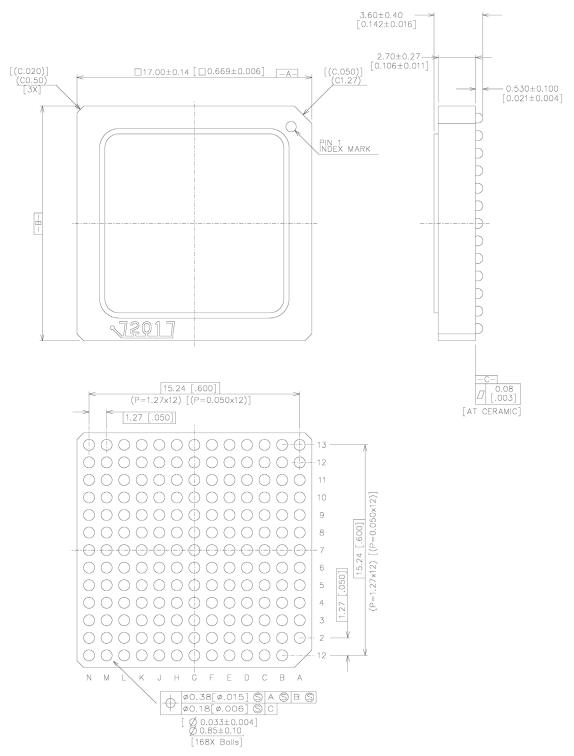
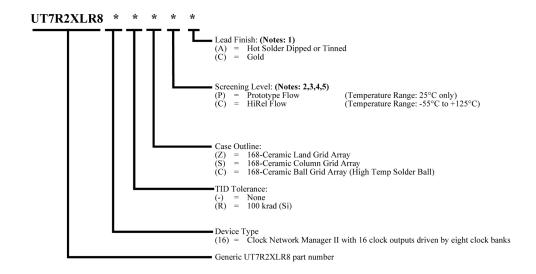
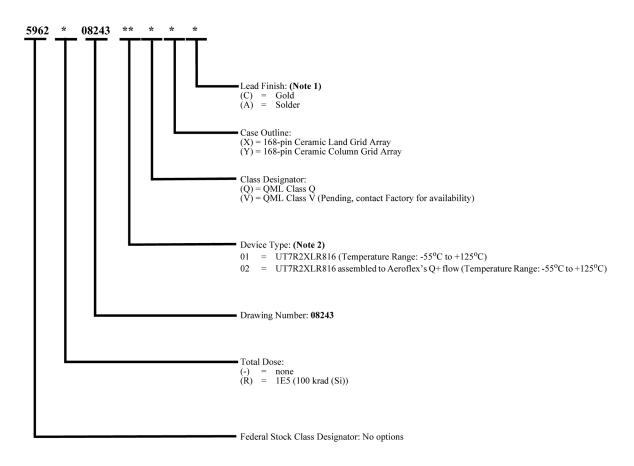



Figure 13. 168-CBGA Package

- 1) Seal ring is connected to VSS.
- 2) Units are in millimeters and [inches].

UT7R2XLR8**: Datasheet



- 1) Lead finish (A or C) must be specified.
- 2) Prototype Flow per CAES Manufacturing Flows Document. Devices are tested at 25°C only. Radiation is neither tested nor guaranteed.
- 3) HiRel Flow per CAES Manufacturing Flows Document. Radiation TID tolerance may be ordered.

Package Option	Associated Lead Finish
(Z) 168 CLGA	(C) Gold
(S) 168 CCGA	(A) Hot Solder Dipped
(C) 168 CBGA	(A) Hot Solder Dipped

UT7R2XLR816: SMD

Notes:

- 1) Lead finish is "C" (gold) only for case outline "X" and "A" (solder) only for cast outline "Y".
- 2) CAES Q+ assembly flow, as defined in section 4.2.2.d of the SMD, provides QML-Q product through the SMD that is manufactured with CAES standard QML-V flow, and has completed QML-V qualification per MIL-PRF-38535.

Data Sheet Revision History

REV	Revision Date	Description of Change	Author
1.0.0	4-15	Last official release	BM
1.0.1	10-15	Page 1 added Power dissipation bullet	BM
1.0.2	11-15	Page 1 added last two lines under Dedicated feedback Input/Output module bullet and added one line under Output clock bank signaling and control bullet. Added CAES datasheet template.	ВМ
1.0.3	6-17	Page 1 and 46 removed Commercial and Industrial Temperature Ranges from datasheet and offering.	RT
1.0.4	8-21	Page 43-45: Corrections to package drawing dimensions, Figures 11-13.	BM

UT7R2XLR816

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change. Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties

