Features

- 3.3 V operating power supply with typical 11Ω switch connection between ports
- 5.0 V operating power supply with typical 5Ω switch connection between ports
- Bidirectional operation
- Ultra-low power CMOS technology
- ESD Rating HBM: 2000V, Class 2
- Signal Isolation: -60dB
- Channel Bandwidth (3dB): 500MHz
- Standard Microcircuit Drawing (SMD):
- 5962-15244
- QML Q and V compliant part
- Package Options: 20-Lead Flatpack

Operational Environment

- Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Total Dose: $300 \mathrm{krad}(\mathrm{Si})$
- SEL Immune: $\leq 100 \mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$

Applications

- Memory Interface
- Bus Isolation
- Redundancy
- Supports Analog Applications

Introduction

The UT54BS3245 provides 8 bits of high-speed CMOS-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay. The device is organized as one 8 -bit lowimpedance switch. When output enable (/EN) is low, the 8 -bit bus switch is on and port A is connected to port B . When /EN is high, the switch is open and a high-impedance state exists between the two ports.

8-bit Bus Switch

UT54BS3245

Pinlist

TO	$=$	TTL Output
TTB	$=$	Three-State TTL Bidirectional
CI	$=$	CMOS Input
TUI	$=$	TTL Input (Internally Pulled High)
TI	$=$	TTL Input
TTO	$=$	Three-State TLL Output
DIO	$=$	Differential Input/Output

Table 1: Pinlist

Number	Name	Description
$2,3,4,5,6,7,8,9$,	$n A$	Port A Pins
$11,12,13,14,15,16,17,18$	nB	Port B pins
19	$/ E N$	Active LOW enable pin
10	$\mathrm{~V}_{\mathrm{SS}}$	Ground Pin
20	$\mathrm{~V}_{\mathrm{DD}}$	Supply Pin, +3.3V or +5.0V
1	NC	No Connect (electrically not connected to die)

Package Pinout Diagram

Absolute Maximum Ratings ${ }^{1,2}$

Table 2: Absolute Maximum Ratings

Symbol	Parameter	MIN	MAX	Units
V_{DD}	Positive Supply Voltage	-0.5	+7.2	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{I}_{\mathrm{CCC}}$	DC Channel Current		65	mA
P_{D}	Max Power Dissipation ${ }^{(3)}$		1.6	W
$\mathrm{~T}_{\mathrm{J}}$	Junction Temperature		+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JC }}$	Thermal resistance, junction-to-case		15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
ESD $_{\text {HBM }}$	ESD Protection ${ }^{(4)}$		2000	$\mathrm{~V}^{(2)}$

Notes:

1) Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond limits indicated in the operational sections of this specification are not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability and performance.
2) All voltages referenced to $V_{S S}$
3) Per MIL-STD-883, method 1012, section 3.4.1, $\left.\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{J}}(\max)-\mathrm{T}_{\mathrm{C}}(\max)\right) / \theta_{\mathrm{Jc}}\right)$
4) Per MIL-STD-883, method 3015, Table 3

UT54BS3245

Operational Environment ${ }^{(1)}$

Table 3: Operational Environment

Symbol	Parameter	Limit	Units
TID	Total Ionizing Dose ${ }^{(2)}$	300	$\mathrm{krad}(\mathrm{Si})$
SEL	Single Event Latchup Immunity ${ }^{(3)}$	≤ 100	$\mathrm{MeV}^{2} \mathrm{~cm}^{2} / \mathrm{mg}$

Notes:

1) For devices with procured with a total ionizing dose tolerance guarantee, post-irradiation performance is guaranteed at $25^{\circ} \mathrm{C}$ per MIL-STD-883 Method 1019, Condition A up to maximum TID level procured.
2) Per MIL-STD-883, method 1019, condition A
3) SEL is performed at VDD $=$ Max Voltage at $125^{\circ} \mathrm{C}$

Recommended Operating Conditions ${ }^{(1)}$

Table 4: Recommended Operating Conditions

Symbol	Parameter	Conditions	MIN	MAX	Units
V_{DD}	Positive Supply Voltage		3.0 or 4.5	3.6 or 5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage on any pin		0.0	$\mathrm{~V}_{\mathrm{DD}}$	V
T_{C}	Case Temperature Range		-55	+125	${ }^{\circ} \mathrm{C}$
t_{R}	Rise time, logic inputs	Transition from V_{IL} to V_{IH}		5	ns
t_{F}	Fall time, logic inputs	Transition from V_{IH} to V_{IL}		5	ns
$\mathrm{I}_{\mathrm{CCC}}$	DC Channel Current			60	mA

Note:

1) All voltages referenced to $V_{S S}$

UT54BS3245

DC Electrical Characteristics ${ }^{(1)}$

$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V},-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<+125^{\circ} \mathrm{C}\right.$); Unless otherwise noted, T_{C} is per the temperature range ordered

Table 5: DC Electrical Characteristics

Symbol	Parameter	Conditions	MIN	MAX	Units
V_{IH}	High digital input voltage	$\mathrm{V}_{\mathrm{DD}}=3.6,5.5$	0.7* V ${ }_{\text {DD }}$		V
$\mathrm{V}_{\text {IL }}$	Low digital input voltage	$V_{D D}=3.0,4.5$		0.3* V_{DD}	V
IID	Leakage current digital	$V_{\text {DD }}$ (max); $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-1	1	$\mu \mathrm{A}$
I_{IA}	Leakage current analog	$V_{D D}$ (max); $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-1	1	$\mu \mathrm{A}$
I_{DD}	Active supply current	$V_{D D}=3.6,5.5$		0.1	$\mathrm{mA} / \mathrm{MHz}$
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{DD}}(\mathrm{max}) ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} ; / \mathrm{EN}=\mathrm{V}_{\mathrm{DD}}$		10	$\mu \mathrm{A}$
C_{I}	Input Capacitance (/EN) ${ }^{(2)}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$		18	pF
$\mathrm{Clo}_{\text {IOFF) }}$	Channel pin capacitance (channel disabled) ${ }^{(2)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}(\max) ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}} / 2 ; \\ & / \mathrm{EN}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$		18	pF
$\mathrm{R}_{\text {ONL }}$	Resistance through switch (channel input low) ${ }^{(3)}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{S S}, / E N=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=30 \mathrm{~mA}$		10	Ω
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{S S}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}$		10	Ω
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}, / E N=0 \mathrm{~V}, \mathrm{I}_{0}=30 \mathrm{~mA}$		12	Ω
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{S S}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{0}=15 \mathrm{~mA}$		12	Ω
Ronh	Resistance through switch (channel input high) ${ }^{(3)}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{0}=-30 \mathrm{~mA}$		10	Ω
		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{0}=-15 \mathrm{~mA}$		10	Ω
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{0}=-30 \mathrm{~mA}$		12	Ω
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$		12	Ω
Ron(FLAT)	Switch on resistance ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+/-15 \mathrm{~mA}, 25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{DD}} \end{aligned}$		2	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, / \mathrm{EN}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=+/-15 \mathrm{~mA}, 25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}} / 2, \mathrm{~V}_{\mathrm{DD}} \end{aligned}$		10	Ω

Notes:

1) All voltages referenced to $V_{S S}$
2) Per MIL-STD-883, method 3012
3) Guaranteed by Characterization

UT54BS3245

AC Electrical Characteristics ${ }^{1}$

$\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V},-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<+125^{\circ} \mathrm{C}\right.$); Unless otherwise noted, T_{c} is per the temperature range ordered

Table 6: AC Electrical Characteristics

Symbol	Parameter	Conditions	MIN	MAX	Units
$\mathrm{t}_{\text {PD15 }}$	Channel Propagation Delay ${ }^{(1)}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{II}=+/-$ $15 \mathrm{~mA}, / \mathrm{EN}=\mathrm{V}_{\mathrm{SS}}$		250	ps
t_{EN}	Channel Enable Delay ${ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	1	5	ns
$\mathrm{t}_{\mathrm{DIS}}$	Channel Disable Delay ${ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	1	5	ns
$\mathrm{t}_{\mathrm{PD} 15}$	Channel Propagation Delay ${ }^{(1)}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{II}=+/-$ $15 \mathrm{~mA}, / \mathrm{EN}=\mathrm{V}_{\mathrm{SS}}$		250	ps
t_{EN}	Channel Enable Delay ${ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	1	7	ns
$\mathrm{t}_{\mathrm{DIS}}$	Channel Disable Delay ${ }^{(2)}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	1	7	ns

Notes:

1) The propagation delay through the channel is based on the RC time constant of the channel capacitance and maximum channel resistance for defined $V_{D D}$
2) Measured at 300 mV above or below steady state output voltage using output test load circuit

Table 7: Signal Characteristics

Symbol	Parameter	Conditions	MIN	TYP	MAX	Units
$\mathrm{X}_{\text {TALK }}{ }^{1}$	Channel Cross-Talk ${ }^{(1,2)}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$			-60	dB
$\mathrm{X}_{\text {TALK }}{ }^{1}$	Channel Cross-Talk $^{(1,2)}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$			-60	dB
ISOoff 1	Off Isolation ${ }^{(1,2)}$				-60	dB

Notes:

1) Guaranteed by design
2) $\mathrm{RL}=50 \Omega, C L=50 \mathrm{pF}$, fin $=1 \mathrm{MHz}$, Vin $=1 \mathrm{VRMS}$ centered at $\mathrm{V}_{\mathrm{DD}} / 2$

Timing Diagram

Figure 3: Channel Propagations Delay (/EN = Vss)

Figure 4: Enable Timing

Test Loads

Figure 5: Standard Test Load

UT54BS3245

Package Drawings

Figure 6: 20-Lead Flatpack

Notes:

1) The Lid Is Connected to VSS.
2) Dimensions are in Millimeters.

Ordering Information

Generic Datasheet Part Numbering

Notes:

1) Lead finish (A, C, F, or X) must be specified.
2) If an " X " is specified when ordering, then the part marking will match the lead finish applied to the device shipped
3) Prototype Flow per CAES Manufacturing Flows Document. Lead finish is Factory Option " C " only. Radiation is neither tested nor guaranteed.
4) HiRel Flow per CAES Manufacturing Flows Document. Radiation TID tolerance may (or may not) be ordered.

UT54BS3245

Ordering Information

SMD Part Numbering

Federal Stock Class Designator

Notes:

1) Lead finish must be specified. If " X " is specified when ordering, the factory will determine lead finish. Part marking will reflect the lead finish applied to the device shipped.
2) A radiation hardness assurance level must be selected. The use of "-" indicates no radiation hardness assurance guarantee.

Revision History

Table 8: Revision History

Date	Rev. \#	Change Description	Initials
$05 / 01 / 2016$	1.0 .0	Updated datasheet to reflect CAES logo, colors, and modified format. Updated the following specifications: RoN, $I_{I A}, I_{D D}, I_{D D Q}, T_{\text {EN }}$, and $T_{\text {DIS. }}$	MM
$06 / 23 / 2016$	2.0 .0	Released Datasheet. Updated capacitance, propagation delay, and minor formatting.	BM
$6 / 30 / 2016$	2.0 .1	FEATURES: 20-Lead Flatpack; IDDQ: CONDITIONS: /EN=VDD	BM
$01 / 04 / 2017$	2.0 .2	FEATURES: QML Q, V compliant part	BM
$09 / 12 / 2019$	2.0 .3	Package Pinout Diagram, Fig. 2, p.3 - Error Correction: Pins $11-14$	BM
$08 / 19 / 2021$	2.0 .5	ROC Table, p.4: Input $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ parameter updates.	BM

Datasheet Definitions

Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change. Specifications can be TBD and the part package and pinout are not final.
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. Iaw is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

