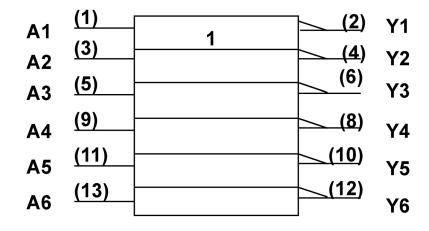
Hex Inverters

UT54ACTS04E

Features

- $\bullet~0.6~\mu m$ CRH CMOS process
 - Latchup immune
- High speed
- Low power consumption
- Wide power supply operating range of 3.0V to 5.5V
- Available QML Q or V processes
- 14-pin flatpack
- UT54ACTS04E SMD 5962-96517

Description


The UT54ACTS04E is a hex inveter. The circuit performs the Boolean functions $Y = \overline{A} \cdot \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The device is characterized over full military temperature range of -55°C to +125°C.

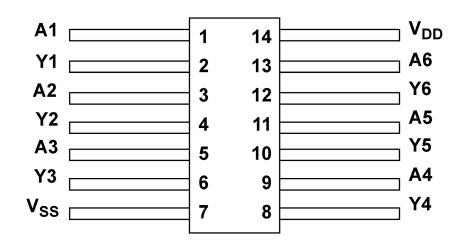
Function Table

Input	Output
A	Y
Н	L
L	Н

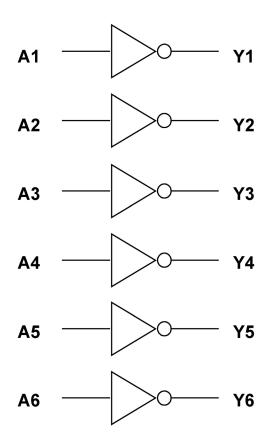
Logic Symbol

Note:

1) Logic symbol in accordance with ANSI/IEEE standard 91-1984 and IEC Publication 617-12.



Hex Inverters


UT54ACTS04E

Pinout

14-Lead Flatpack Top View

Logic Diagram

Operational Environment¹

Parameter	Limit	Units	
Total Dose	1.0E6	rads(Si)	
SEU Threshold ²	108	MeV-cm ² /mg	
SEL Threshold	120	MeV-cm ² /mg	
Neutron Fluence	1.0E14	n/cm ²	

Notes:

1) Logic will not latchup during radiation exposure within the limits defined in the table.

2) Device storage elements are immune to SEU affects.

Absolute Maximum Ratings

Symbol	Parameter	Limit	Units
V _{DD}	Supply voltage	-0.3 to 7.0	V
V _{I/O}	Voltage any pin	3 to V _{DD} +.3	V
T _{STG}	Storage Temperature range	-65 to +150	°C
Tյ	Maximum junction temperature	+175	°C
T_{LS}	Lead temperature (soldering 5 seconds)	+300	°C
Θ_{JC}	Thermal resistance junction to case	15.5	°C/W
II	I DC input current ±10 mA		mA
P _D ²	Maximum package power dissipation permitted @ T _C =125°C3.2W		W

Notes:

Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2) Per MIL-STD-883, method 1012.1, Section 3.4.1, $P_D = (T_{j(max)} - T_{c(max)}) / \Theta jc$

Recommended Operating Conditions

Symbol	Parameter	Limit	Units
V _{DD}	Supply voltage	3.0 to 5.5	V
V _{IN}	Input voltage any pin	0 to V_{DD}	V
T _C	Temperature range	-55 to + 125	°C

DC Electrical Characteristics (Pre and Post-Radiation)*

(V_{DD} = 3.3V to 5.5V; V_{SS} = 0V 6 , -55°C< T_C < +125°C); Unless otherwise noted, T_C is per the temperature range ordered

Symbol	Description	Condition	MIN	MAX	Unit
V_{IL1}	Low-level input voltage ¹	V_{DD} from 4.5V to 5.5V		0.8	V
V _{IL2}	Low-level input voltage ¹	V _{DD} from 3.0V to 3.6V		0.8	V
V_{IH1}	High-level input voltage ¹	V_{DD} from 4.5V to 5.5V	0.5 V _{DD}		V
V_{IH2}	High-level input voltage ¹	V _{DD} from 3.0V to 3.6V	2.0		V
\mathbf{I}_{IN}	Input leakage current	$V_{IN} = V_{DD} \text{ or } V_{SS}$	-1	1	μA
V _{OL1}	Low-level output voltage ³	$ I_{\text{OL}} = 8\text{mA} \\ V_{\text{DD}} = 4.5\text{V to } 5.5\text{V} $		0.4	V
V _{OL2}	Low-level output voltage ³	$ I_{\text{OL}} = 6\text{mA} \\ V_{\text{DD}} = 3.0\text{V to } 3.6\text{V} $		0.4	V
V_{OH1}	High-level output voltage ³	I_{OH} = -8mA V_{DD} from 4.5V to 5.5V	$0.7 V_{DD}$		V
V_{OH2}	High-level output voltage ³	I_{OH} = -6mA V_{DD} from 3.0V to 3.6V	2.4		V
I_{OS1}	Short-circuit output current ^{2,4}	$V_{O} = V_{DD}$ and V_{SS} V_{DD} from 4.5V to 5.5V	-200	200	mA
I_{OS2}	Short-circuit output current ^{2,4}	$V_{O} = V_{DD}$ and V_{SS} V_{DD} from 3.0V to 3.6V	-100	100	mA
I _{OL1}	Low level output current ⁸		8		mA
I _{OL2}	Low level output current ⁸		6		mA
I _{OH1}	High level output current ⁸	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{OH} = V_{DD}\text{-}0.4V$ $V_{DD} \text{ from } 4.5V \text{ to } 5.5V$	-8		mA
I _{OH2}	V _{IN} = V _{DD} or V _{SS}			mA	
P _{total1}	$C_{\rm L} = 50 \rm pF$			1	mW/ MHz
P _{total2}	otal2 Power dissipation ^{2, 7} $C_L = 50 pF$ $V_{DD} = 3.0V to 3.6V$		0.5	mW/ MHz	
\mathbf{I}_{DDQ}	Quiescent Supply Current $V_{IN} = V_{DD}$ or V_{SS} V_{DD} from 3.6V to 5.5V1		10	μA	
ΔI_{DDQ}	$I_{DDQ} \qquad \begin{array}{c} \mbox{ Quiescent Supply Current Delta} \\ I_{DDQ} \end{array} \qquad \begin{array}{c} \mbox{ For input under test} \\ V_{IN} = V_{DD} - 2.1v \\ \mbox{ For all other inputs} \\ V_{IN} = V_{DD} \mbox{ or } V_{SS} \\ V_{DD} = 5.5V \end{array} \qquad \begin{array}{c} 1.0 \\ \mbox{ for all other inputs} \\ for all other$		1.6	mA	
C_{IN}	Input capacitance ⁵	Input capacitance ⁵ $\begin{cases} f = 1 \text{MHz} \\ V_{\text{DD}} = 0 \text{V} \end{cases}$		15	pF
C _{OUT}	Output capacitance ⁵	f = 1MHz V _{DD} = 0V		15	pF

Notes:

*For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25×C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.

- 1) Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, 0%; $V_{IL} = V_{IL}(max) + 0\%$, 50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$.
- 2) Supplied as a design limit but not guaranteed or tested.
- 3) Per MIL-PRF-38535, for current density ≤5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/ MHz.
- 4) Not more than one output may be shorted at a time for maximum duration of one second.
- 5) Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{ss} at frequency of 1MHz and a signal amplitude of 50mV rms maximum.
- 6) Maximum allowable relative shift equals 50mV
- 7) Power dissipation specified per switching output.
- 8) Parameter guaranteed by design and characterization, but is not tested.

AC Electrical Characteristics (Pre and Post-Radiation)*

(V_{DD} = 3.0V to 5.5V; V_{SS} = 0V ¹, -55°C < T_C < +125°C); Unless otherwise noted, T_C is per the temperature range ordered

Symbol	Parameter	Condition	V _{DD}	Minimum	Maximum	Unit
t _{PLH} Input to Yn	Input to Vn	C _L = 50pF	3.0V to 3.6V	2	14	ns
	Input to Th		4.5V to 5.5V	1	7	
tphl	Input to Yn	$C_L = 50 pF$	3.0V to 3.6V	2	14	20
			4.5V to 5.5V	1	7	ns

Note:

*For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25×C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.

1) Maximum allowable relative shift equals 50mV.

Packaging

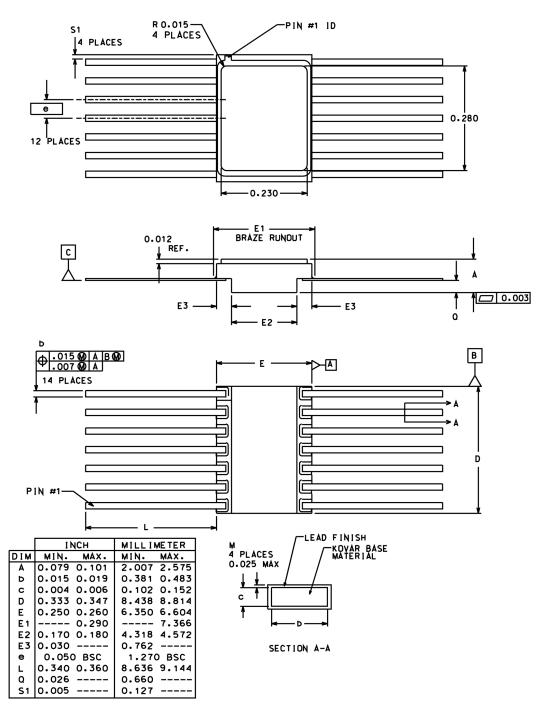
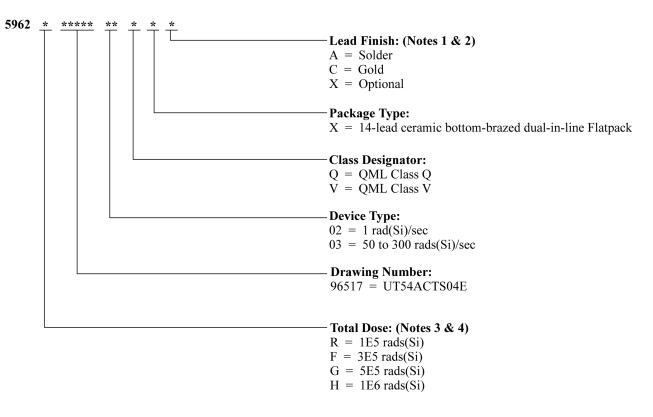


Figure 1. 14-Lead Flatpack


Notes:

- 1) All exposed metallized areas are gold plated over electroplated nickel per MIL-PRF-38535.
- 2) The lid is electrically connected to $V_{\mbox{\scriptsize SS}}.$
- 3) Lead finishes are in accordance with MIL-PRF-38535.
- 4) Dimension symbol is in accordance with MIL-PRF-38533.
- 5) Lead position and colanarity are not measured.

Hex Inverters UT54ACTS04E

UT5ACTS04E: SMD

Notes:

- 1) Lead finish (A,C, or X) must be specified.
- 2) If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).
- 3) Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening. For prototype inquiries, contact factory.
- 4) Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si) or 1E6 rads(Si) and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

