Schmitt Octal Bus Transceiver with Three-State Outputs

UT54ACS245S

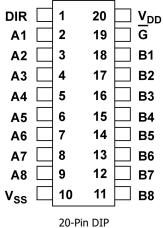
Features

- Three-state outputs drive bus line directly
- 1.2 μ CMOS
 - Latchup immune
- · High speed
- Low power consumption
- Single 5 volt supply
- Available QML Q or V processes
- Flexible package
 - 20-pin DIP
 - 20-lead flatpack
- UT54ACS245S SMD 5962-96572

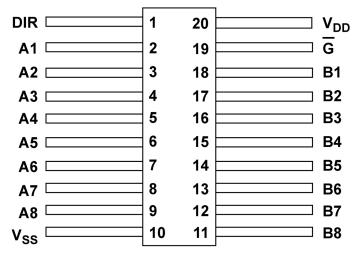
Description

The UT54ACS245S is a non-inverting octal bus transceiver with Schmitt Trigger input levels. The circuit is designed for asynchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

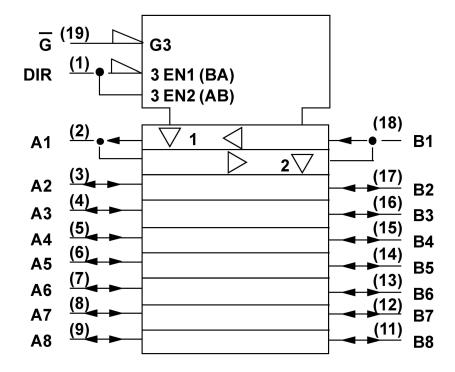
The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the direction control (DIR) input. The enable input (\overline{G}) disables the device so that the buses are effectively isolated.


The devices is characterized over full military temperature range of -55°C to +125°C.

Function Table

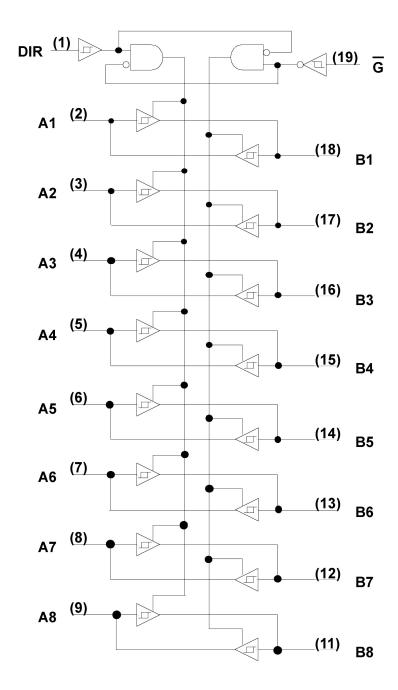

Enable G	Direction Control DIR	Operation
L	L	B Data To A Bus
L	Н	A Data To B Bus
Н	X	Isolation

Pinouts


20-Pin DIP Top View

20-Lead Flatpack Top View

Logic Symbol



Note:

1) Logic symbol in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Logic Diagram

Operational Environment ¹

Parameter	Limit	Units
Total Dose	1.0E6	rads(Si)
SEU Threshold ²	80	MeV-cm ² /mg
SEL Threshold ³	120	MeV-cm ² /mg
Neutron Fluence	1.0E14	n/cm²

Notes:

- 1) Logic will not latchup during radiation exposure within the limits defined in the table.
- 2) Device storage elements are immune to SEU affects.

Absolute Maximum Ratings

Symbol	Parameter	Limit	Units
V_{DD}	Supply voltage	-0.3 to 7.0	V
$V_{\rm I/O}$	Voltage any pin3 to V _{DD} +.3		V
T _{STG}	Storage Temperature range	-65 to +150	°C
Tı	Maximum junction temperature	+175	°C
T _{LS}	Lead temperature (soldering 5 seconds)	+300	°C
Θις	Thermal resistance junction to case	20	°C/W
\mathbf{I}_{I}	DC input current	±10	mA
P_{D}	Maximum power dissipation	1	W

Note:

1) Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Limit	Units
V_{DD}	Supply voltage	4.5 to 5.5	V
V_{IN}	Input voltage any pin	0 to V_{DD}	V
T _C	Temperature range	-55 to + 125	°C

DC Electrical Characteristics ⁷

 $(V_{DD} = 5.0V \pm 10\%; V_{SS} = 0V^6, -55^{\circ}C < T_C < +125^{\circ}C);$ Unless otherwise noted, Tc is per the temperature range ordered.

Symbol	Parameter	Condition	MIN	MAX	Unit
V _T +	Schmitt Trigger, positive going threshold ¹ ACS			.7V _{DD}	V
V _T -	Schmitt Trigger, negative going threshold ¹ ACS		.3V _{DD}		V
V _H	Schmitt Trigger, typical range of hysteresis ² ACS		0.6	1.5	V
I _{IN}	Input leakage current ACS	$V_{IN} = V_{DD}$ or V_{SS}	-1	1	μА
V _{OL}	Low-level output voltage ³ ACS	$I_{OL}=100\mu A$		0.25	V
V _{OH}	High-level output voltage ³ ACS	I _{OH} = -100μA	V _{DD} - 0.25		V
I _{OL}	Output current (Sink) 10	V _{IN} =V _{DD} or V _{SS} V _{OL} =0.4V	12		mA
I _{OH}	Output current (Source) 10	$V_{IN}=V_{DD}$ or V_{SS} $V_{OH}=V_{DD}$ - 0.4	-12		mA
I _{OZ}	Three-state output leakage current	$V_{O} = V_{DD}$ and V_{SS}	-30	30	μА
I _{OS}	Short-circuit output current ^{2, 4} ACS	$V_{O} = V_{DD}$ and V_{SS}	-300	300	mA
P _{total}	Power dissipation ^{2, 8, 9}	$C_L = 50pF$		2.0	mW/ MHz
I_{DDQ}	Quiescent Supply Current	$V_{DD} = 5.5V$		10	μΑ
C _{IN}	Input capacitance ⁵	f = 1MHz @ 0V		15	pF
C _{OUT}	Output capacitance ⁵	f = 1MHz @ 0V		15	pF

Notes:

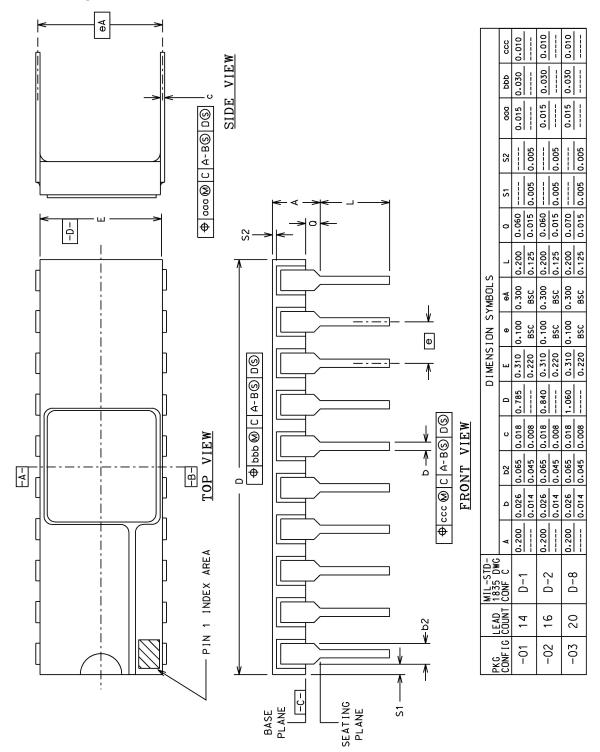
- 1) Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, -0%; $V_{IL} = V_{IL}(max) + 0\%$, -50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$.
- 2) Supplied as a design limit but not guaranteed or tested.
- 3) Per MIL-PRF-38535, for current density ≤ 5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/MHz.
- 4) Not more than one output may be shorted at a time for maximum duration of one second.
- 5) Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1MHz and a signal amplitude of 50mV rms maximum.
- Maximum allowable relative shift equals 50mV.
- 7) All specifications valid for radiation dose ≤ 1E6 rads(Si).
- 8) Power does not include power contribution of any TTL output sink current.
- 9) Power dissipation specified per switching output.
- 10) Guaranteed based on characterization data, but not tested.

Schmitt Octal Bus Transceiver with Three-State Outputs

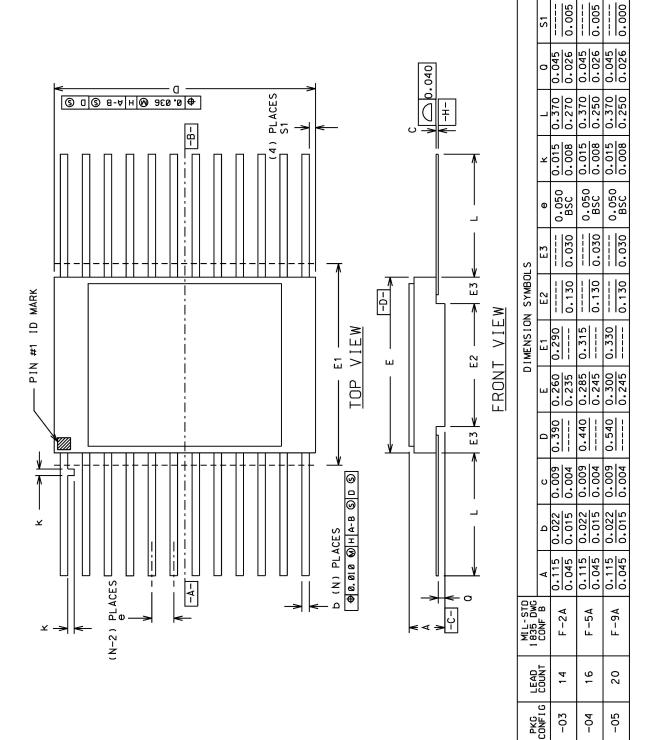
UT54ACS245S

AC Electrical Characteristics ²

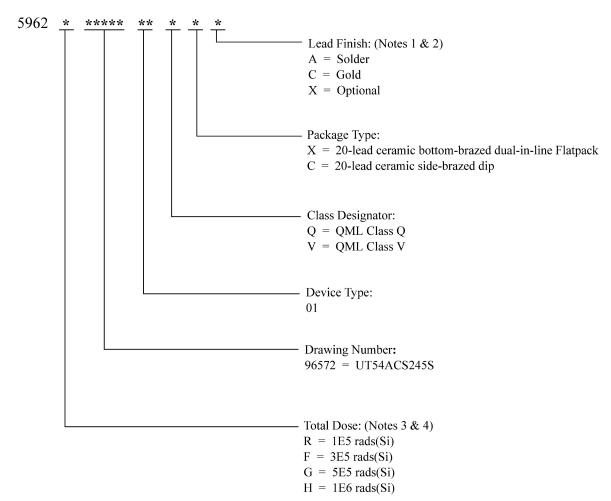
(V_{DD} = 5.0V ±10%; V_{SS} = 0V 6 , -55°C < T_C < +125°C); Unless otherwise noted, T_C is per the temperature range ordered.


Symbol	Parameter	Minimum	Maximum	Unit
t _{PLH}	Data to bus	2	15	ns
t _{PHL}	Data to bus	2	15	ns
t _{PZL}	G low to bus active	2	12	ns
t _{PZH}	G low to bus active	2	12	ns
t _{PLZ}	G high to bus three-state	2	15	ns
t _{PHZ}	G high to bus three-state	2	15	ns

Notes:


- 1) Maximum allowable relative shift equals 50mV.
- 2) All specifications valid for radiation dose ≤ 1E6 rads(Si)

Packaging Side-Brazed Packages


Flatpack Packages

Schmitt Octal Bus Transceiver with Three-State Outputs

UT54ACS245S

UT54ACS245S: SMD

Notes:

- 1) Lead finish (A,C, or X) must be specified.
- 2) If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).
- 3) Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening. For prototype inquiries, contact factory.
- 4) Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si) or 1E6 rads(Si) and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Datasheet Definitions

Datasheet Dennitions		
	DEFINITION	
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change. Specifications can be TBD and the part package and pinout are not final.	
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.	
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.	

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

