UT54ACS138E

Features

- $0.6 \mu \mathrm{~m}$ CRH CMOS process
- Latchup immune
- High speed
- Low power consumption
- Wide power supply operating range of 3.0 V to 5.5 V
- Available QML Q or V processes
- 16-pin flatpack
-UT54ACS138E - SMD - 5962-96544

Description

The UT54ACS138E is a 3 -line to 8 -line decoders/demultiplexer designed to be used in high-performance memorydecoding or data-routing applications requiring very short propagation delay times.

The conditions at the binary select inputs and the three enable inputs select one of eight output lines. Two activelow and one active-high enable inputs reduce the need for external gates of inverters when expanding. A 24 -line decoder can be implemented without external inverters and a 32 -line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.
The devices are characterized over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Function Table

Enable Inputs			Select Inputs			Output							
G1	G2A	$\overline{\text { c2B }}$	c	B	A	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	X	H	H	H	H	H	H	H	H
X	H	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	L	H	H	H	H	H	L	H	H	H	H
H	L	L	H	L	L	H	H	H	H	L	H	H	H
H	L	L	H	L	H	H	H	H	H	H	L	H	H
H	L	L	H	H	L	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L

3-Line to 8-Line Decoders/Demultiplexers

UT54ACS138E

Pinout

Logic Symbol

Note:

1) Logic symbol in accordance with ANSI/IEEE standard 91-1984 and IEC Publication 617-12.

UT54ACS138E

Logic Diagram

UT54ACS138E

Expansion to 1-of-32 Decoding

UT54ACS138E

Operational Environment ${ }^{1}$

Parameter	Limit	Units
Total Dose	1.0 E 6	$\mathrm{rads}(\mathrm{Si})$
SEU Threshold ${ }^{2}$	108	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
SEL Threshold	120	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
Neutron Fluence	1.0 E 14	$\mathrm{n} / \mathrm{cm}^{2}$

Notes:

1) Logic will not latchup during radiation exposure within the limits defined in the table.
2) Device storage elements are immune to SEU affects.

Absolute Maximum Ratings

Symbol	Parameter	Limit	Units
V_{DD}	Supply voltage	-0.3 to 7.0	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{O}}$	Voltage any pin	-.3 to $\mathrm{V}_{\mathrm{DD}}+.3$	V
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	+175	${ }^{\circ} \mathrm{C}$
T_{LS}	Lead temperature (soldering 5 seconds)	+300	${ }^{\circ} \mathrm{C}$
Θ_{JC}	Thermal resistance junction to case	15.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
I_{I}	DC input current	± 10	mA
$\mathrm{P}_{\mathrm{D}}{ }^{2}$	Maximum power dissipation permitted $@ \mathrm{TC}=125^{\circ} \mathrm{C}$	3.3	W

Notes:

1) Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2) Per MIL-STD-883, method 1012.1, Section 3.4.1, $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{j}(\max)}-\mathrm{T}_{\mathrm{c}(\max)}\right) / \Theta_{\jmath \mathrm{c}}$

Recommended Operating Conditions

Symbol	Parameter	Limit	Units
V_{DD}	Supply voltage	3.0 to 5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Input voltage any pin	0 to V_{DD}	V
T_{C}	Temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$

UT54ACS138E

DC Electrical Characteristics (Pre and Post-Radiation)*

($\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}^{6} ;-55^{\circ} \mathrm{C}<\mathrm{Tc}<+125^{\circ} \mathrm{C}$); Unless otherwise noted, Tc is per the temperature range ordered

Symbol	Description	Condition	MIN	MAX	Unit
$V_{\text {IL }}$	Low-level input voltage ${ }^{1}$	V_{DD} from 3.0V to 5.5 V		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
V_{IH}	High-level input voltage ${ }^{1}$	V_{DD} from 3.0V to 5.5 V	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V
IIN	Input leakage current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$	-1	1	$\mu \mathrm{A}$
VoL	Low-level output voltage ${ }^{3}$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ $V_{D D}$ from 3.0 V to 5.5 V		0.25	V
V_{OH}	High-level output voltage ${ }^{3}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ $V_{D D}$ from 3.0 V to 5.5 V	$V_{D D}-0.25$		V
Ios1	Short-circuit output current ${ }^{\text {2,4 }}$	$\begin{aligned} & V_{O}=V_{D D} \text { and } V_{S S} \\ & V_{D D} \text { from } 4.5 V \text { to } 5.5 \mathrm{~V} \end{aligned}$	-200	200	mA
Ios2	Short-circuit output current 2,4	$\begin{array}{\|l} \hline V_{O}=V_{D D} \text { and } V_{S S} \\ V_{D D} \text { from } 3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{array}$	-100	100	mA
Iol1	Low level output current ${ }^{8}$ (sink)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$ $V_{D D}$ from 4.5 V to 5.5 V	8		mA
IoL2	Low level output current ${ }^{8}$ (sink)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V} \end{aligned}$ $V_{D D}$ from 3.0 V to 3.6 V	6		mA
Ioh1	High level output current ${ }^{8}$ (source)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \end{aligned}$ $V_{D D}$ from 4.5 V to 5.5 V	-8		mA
$\mathrm{I}_{\text {OH2 }}$	High level output current ${ }^{8}$ (source)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V} \end{aligned}$ $V_{D D}$ from 3.0 V to 3.6 V	-6		mA
$\mathrm{P}_{\text {total1 }}$	Power dissipation 7, 8	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$		1.1	mW/ MHz
Ptotal2	Power dissipation 7, 8	$C_{L}=50 \mathrm{pF}$ $V_{D D}$ from 3.0 V to 3.6 V		0.5	mW/ MHz
$\mathrm{I}_{\text {DDQ }}$	Quiescent Supply Current	$V_{I N}=V_{D D} \text { or } V_{S S}$ $V_{D D}$ from 3.6 V to 5.5 V		10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{5}$	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$		15	pF
Cout	Output capacitance ${ }^{5}$	$f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$		15	pF

Notes:

*For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at $25 \times \mathrm{C}$ per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.

1) Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{min})+$ $20 \%,-0 \% ; \mathrm{V}_{\text {IL }}=\mathrm{V}_{\text {IL }}(\max)+0 \%,-50 \%$, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}(\mathrm{max})$.
2) Supplied as a design limit but not guaranteed or tested.
3) Per MIL-PRF-38535, for current density $\leq 5.0 \mathrm{E} 5 \mathrm{amps} / \mathrm{cm}^{2}$, the maximum product of load capacitance (per output buffer) times frequency should not exceed $3,765 \mathrm{pF} / \mathrm{MHz}$.

UT54ACS138E

4) Not more than one output may be shorted at a time for maximum duration of one second.
5) Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{Ss} at frequency of 1 MHz and a signal amplitude of 50 mV rms maximum.
6) Maximum allowable relative shift equals 50 mV .
7) Power dissipation specified per switching output.
8) Parameter guaranteed by design and characterization, but is not tested.

AC Electrical Characteristics (Pre and Post-Radiation) *

($\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{S S}=0 \mathrm{~V}^{1},-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<+125^{\circ} \mathrm{C}$); Unless otherwise noted, T_{c} is per the temperature range ordered

Symbol	Parameter	Condition	VDD	Minimum	Maximum	Unit
tPLH 1	Binary select to \bar{Y}_{n}	$C_{L}=50 \mathrm{pF}$	3.0 V to 3.6 V	4	19	ns
			4.5 V to 5.5 V	3	10	
$\mathrm{t}_{\text {PHL1 }}$	Binary select to \bar{Y}_{n}	$C_{L}=50 \mathrm{pF}$	3.0 V to 3.6 V	4	19	ns
			4.5 V to 5.5 V	3	10	
$\mathrm{tPLH2}$	Enable to Output \bar{Y}_{n}	$C_{L}=50 \mathrm{pF}$	3.0 V to 3.6 V	3	19	ns
			4.5 V to 5.5 V	3	10	
$\mathrm{tPHL2}$	Enable to Output \bar{Y}_{n}	$C_{L}=50 \mathrm{pF}$	3.0 V to 3.6 V	4	19	ns
			4.5 V to 5.5 V	3	10	

Notes:

*For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at $25 \times$ C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured.

1) Maximum allowable relative shift equals 50 mV .

3-Line to 8-Line Decoders/Demultiplexers

UT54ACS138E

Packaging

Figure 1. 16-lead Flatpack

Notes:

1) All exposed metalized areas are gold plated over electroplated nickel per MIL-M-38510.
2) The lid is electrically connected to VSS.
3) Lead finishes are in accordance to MIL-PRF-38535.
4) Package dimensions and symbols are similar to MIL-STD-1835 variation F-5A.
5) Lead position and coplanarity are not measured.
6) ID mark symbol is vendor option.

UT54ACS138E

UT54ACS138E: SMD

Notes:

1) Lead finish (A, C, or X) must be specified.
2) If an " X " is specified when ordering, part marking will match the lead finish and will be either " A " (solder) or " C " (gold).
3) Total dose radiation must be specified when ordering. QML Q and $Q M L V$ not available without radiation hardening. For prototype inquiries, contact factory.
4) Device type 02 is only offered with a TID tolerance guarantee of 3 E 5 rads (Si) or 1 E 6 rads (Si) and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1 E 5 rads(Si), 3 E 5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

UT54ACS138E

Datasheet Definitions

Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change. Specifications can be TBD and the part package and pinout are not final.
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. Jaw is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

