Features

- 16-to-1 Analog Mux
- 100Ω Signal paths (typical)
- 5V single supply
- Rail-to-Rail signal handling
- Asynchronous RESET input
- SPI™/QSPI™ and MICROWIRE™ compatible serial interface (UT16MX112)
- Asynchronous parallel input Interface (UT16MX110)
- Synchronous parallel input Interface (UT16MX111)
- LVCMOS/LVTTL compatible inputs (provided by internal voltage regulator)
- 2kV ESD Protection (per MIL-STD-883, Method 3015.7)
- Operational environment:
 - Total ionizing dose: 300 krad(Si)
 - SEL immune to a LET of 110 MeV-cm²/mg
 - SEU immune to a LET of 62.3 MeV-cm²/mg
- Packaging: 28-lead Ceramic Flatpack
- Standard Microcircuit Number 5962-10233
 - QML Q, QML V

Introduction

The UT16MX110/111/112 are low voltage analog multiplexers with a convenient LVCMOS (3.3V) digital interface. The analog muxes have Break-Before-Make architecture with a low channel resistance. The muxes support rail-to-rail input signal levels. The multiplexer supports serial (SPI™), or parallel (asynchronous or synchronous) interface.

The UT16MX110/111/112 operates with a single $5V(\pm 10\%)$ power supply. The voltage used for the digital circuitry and the digital I/O is generated internally from the positive analog supply voltage. Therefore, no external digital voltage supply is required.

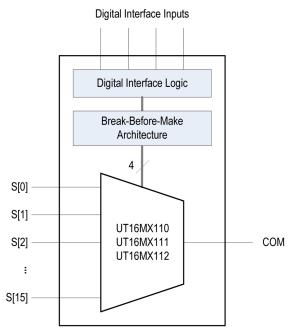


Figure 1. UT16MX110/111/112 Block Diagram

Functional Description

All mux decoding (whether for the UT16MX110, UT16MX111 or UT16MX112 device) operation utilizes a Break-Before-Make process to prevent shorting between analog data inputs during address transitions.

The 3V_OUT pin provides a regulated voltage of 3.3V. This voltage is derived from the AVDD supply and is used internally as the positive supply voltage for the digital logic and digital I/O circuitry. The 3V_OUT pin requires a load capacitor of 0.1uF for proper operation.

UT16MX110:

The UT16MX110 utilizes a parallel interface which operates in asynchronous mode much like discrete logic switches. The UT16MX110 requires the following operation in order to properly initialize the part following power-up: All address states for the A[3:0] address lines must be exercised following AVDD power-up to ensure correct addressing. Once this operation has been completed, normal asynchronous addressing can then be used to select the desired input channel (i.e. one of S[15:0]) to connect to the COM output. The S[15:0] analog channels are routed asynchronously via the binary decoding of A[3:0] static logic levels after initialization. The address pins A[3:0] are required to hold static levels for proper mux operation. Any change in A[3:0] pins directs the COM connection to the appropriate S[x] input after approximately 100ns propagation delay (including the Break- Before-Make delay). All bits (A[3:0]) of any address change should be received by the UT16MX110 within 18 ns of the first bit change for proper operation. The asynchronous parallel interface mode requires $\overline{\text{CS}}$ to be low for accepting a change on the address pins A[3:0]. When $\overline{\text{CS}}$ is high, the UT16MX110 disables the address pins A[3:0], as well as holding the last valid address state, thereby mitigating against any single-event upsets or transients on the address bus.

UT16MX111:

The UT16MX111 utilizes a parallel interface which operates in a synchronous mode which utilizes the PLATCH input as the latching clock. Upon rising edge of PLATCH, logic level at the A[3:0] pins will be registered and retained internally to decode the mux. Based on the values of the A[3:0] pins, COM is connected to the appropriate S[x] input after approximately 100ns propagation delay (including the Break-Before-Make delay).

UT16MX112:

The UT16MX112 utilizes a serial interface that supports the standard that is compatible with MICROWIRETM, SPITM, and QS- PITM. The UT16MX112 SPITM interface can be depicted as an 8- bit serial shift register controlled by \overline{SS} , clocked by the rising edge of SCLK. The 8-bit shift register is for compatibility purposes, even though this UT16MX112 serial address setting requires only 4 bits. The four LSB of the 8-bit shift register are the four bits de- coding the mux address. When shifting data into the part, the MSB enters the part first. The four MSB may be set to zeros, e.g., the 8- bit command "00001001" would set the mux to connect COM to S[9].

The UT16MX112 is considered a slave SPITM device with MOSI (Master Out Slave In) as the data input pin to the device. The data is shifted with D7 as the first bit into the shift register, and also the first bit out to the MISO (Master In Slave Out) output pin after eight clock cycles of SCLK. The signal on the \overline{SS} pin defines the window when the address bits are shifted into the device. This occurs when signal on \overline{SS} is low. Only when \overline{SS} is high at the close of the shifting window, does the mux decoding get updated and COM is directed to the decoded S[x] input (after Break-Before- Make delay).

SPI™ Operations:

The SPITM (Serial Peripheral Interface) is implemented as a synchronous 8-bit serial shift register controlled by four pins: MOSI, MISO, SCLK, and \overline{SS} . This is compatible with the SPITM/ QSPITM standard as defined by Motorola on the MC68HCxx line of microcontrollers. This SPITM also conforms to the MICROW- IRETM interface, an SPITM subset interface, as defined by National Semiconductor.

The UT16MX112 SPITM is always a slave device, where MOSI, SCLK, and \overline{SS} are controlled by a master device. MISO output is used as receiving slave data or to daisy chain several SPITM devices in appropriate applications.

The MUX select functionality is controlled by the four LSB of the 8-bit SPITM shift registers. When shifting, the first SCLK rising edge clocks in the MSB first. The first falling edge of the SCLK clocks out the 6th bit of the current values in the SPITM registers, since the 7th bit already appears at the MISO at the start of a serial transmission before the first SCLK (Figures 7 and 8).

Reset Function (UT16MX111/112 Only):

The $\overline{\text{RESET}}$ pin is used to reset all internal logic circuits. $\overline{\text{RESET}}$ held low also keeps all COM and S[15:0] analog I/Os in a high impedance state. This is the recommended condition at system power-up.

Asserting $\overline{\text{RESET}}$ (active low) resets all of the internal address decoding registers to 0, thus steering the COM to connect to S[0] while in the high impedance state. When $\overline{\text{RESET}}$ is de-asserted (high), both COM and S[0] will come out of the high impedance state and COM will be driven by S[0].

Table 1: UT16MX110 Pin Description

Pin No.	Name	I/O	Туре	Description
1	AV_DD		Power	Analog Positive Supply
2	NC			No Connection
3	NC			No Connection
4-11	S[15:8]	Input	Analog	Muxed Inputs
12	GND		Power	Digital Ground
13	3V_OUT	Output	Power	Digital Power Bypass Connection ¹
14	A3	Input	Digital	Parallel A3
15	A2	Input	Digital	Parallel A2
16	A1	Input	Digital	Parallel A1
17	A0	Input	Digital	Parallel A0
18	CS	Input	Digital	Active Low Parallel Chip Select with Internal Pull-up
19-26	S[0:7]	Input	Analog	Muxed Inputs
27	AV _{SS}		Power	Analog Negative Supply
28	COM	Output	Analog	Muxed Output ²

- 1) Bypass capacitor of 0.1 μ F required for proper operation (See Figure 11)
- 2) Continuous operation with low load resistance is not recommended. (See Figure 12)

AVDD	1		28	C	MO
NC	2		27	A	vss
NC	3		26	S	7
S15	4		25	S	6
S14	5		24	S	55
S13	6		23	S	4
S12	7	UT16MX110	22	S	3
S11	8	OTTOWIXTTO	21	S	2
S10	9		20	S	31
S9	10		19	S	0
S8	11		18	C	s
GND	12		17	A	' 0
3V_OUT	13		16	A	١1
A3	14		15	A	2

Figure 2. UT16MX110 Pinout

Table 2: UT16MX111 Pin Description

Pin No.	Name	I/O	Туре	Description
1	AV_DD		Power	Analog Positive Supply
2	RESET	Input	Digital	Active Low Reset with Internal Pull-up
3	PLATCH	Input	Digital	Parallel Latch with Internal Pull-down
4-11	S[15:8]	Input	Analog	Muxed Inputs
12	GND		Power	Digital Ground
13	3V_OUT	Output	Power	Digital Power Bypass Connection ¹
14	A3	Input	Digital	Parallel A3
15	A2	Input	Digital	Parallel A2
16	A1	Input	Digital	Parallel A1
17	A0	Input	Digital	Parallel A0
18	NC			No Connection
19-26	S[0:7]	Input	Analog	Muxed Inputs
27	AV _{SS}		Power	Analog Negative Supply
28	СОМ	Output	Analog	Muxed Output ²

- 1) Bypass capacitor of 0.1 μF required for proper operation. (See Figure 11)
- 2) Continuous operation with low load resistance is not recommended. (See Figure 12)

A) (DD	1		28	СОМ
AVDD	<u>'</u>			
RESET	2		27	AVSS
PLATCH	3		26	S7
S15	4		25	S6
S14	5		24	S5
S13	6		23	S4
S12	7	UT16MX111	22	S3
S11	8	21	S2	
S10	9		20	S1
S9	10		19	S0
S8	11		18	NC
GND	12		17	A0
3V_OUT	13		16	A1
А3	14		15	A2

Figure 3. UT16MX111 Pinout

Table 3: UT16MX112 Pin Description

Pin No.	Name	I/O	Туре	Description
1	AV_DD		Power	Analog Positive Supply
2	RESET	Input	Digital	Active Low Reset with Internal Pull-up
3	NC			No Connection
4-11	S[15:8]	Input	Analog	Muxed Inputs
12	GND		Power	Digital Ground
13	3V_OUT	Output	Power	Digital Power Bypass Connection ¹
14	NC			No Connection
15	SCLK	Input	Digital	SPI™ Clock
16	MOSI	Input	Digital	Master-out-Slave-in (Din)
17	MISO	Output	Digital	Master-in-Slave-out (Dout)
18	SS	Input	Digital	SPI™ Shift Control with Internal Pull-up
19-26	S [0:7]	Input	Analog	Muxed Inputs
27	A _{VSS}		Power	Analog Negative Supply
28	СОМ	Output	Analog	Muxed Output ²

- 1) Bypass capacitor of 0.1 μ F required for proper operation. (See Figure 11)
- 2) Continuous operation with low load resistance is not recommended. (See Figure 12)

AVDD RESET NC S15 S14 S13	1 2 3 4 5		28 27 26 25 24 23	COM AVSS S7 S6 S5 S4
S12	7	UT16MX112	22	S3
S11	8		21	S2
S10	9		20	S1
S9	10		19	S0
S8	11		18	SS
GND	12		17	MISO
3V_OUT	13		16	MOSI
NC	14		15	SCLK

Figure 4. UT16MX112 Pinout

Table 4: UT16MX110 Truth Table

CS	А3	A2	A1	A0	СОМ
1	Х	Х	Х	Х	Previous Decide State
0	0	0	0	0	S0
0	0	0	0	1	S1
0	0	0	1	0	S2
0	0	0	1	1	S3
0	0	1	0	0	S4
0	0	1	0	1	S5
0	0	1	1	0	S6
0	0	1	1	1	S7
0	1	0	0	0	S8
0	1	0	0	1	S9
0	1	0	1	0	S10
0	1	0	1	1	S11
0	1	1	0	0	S12
0	1	1	0	1	S13
0	1	1	1	0	S14
0	1	1	1	1	S15

Table 5: UT16MX111 Truth Table

RESET	PLATCH	A 3	A2	A1	A0	СОМ
0	X	Х	Х	Х	Х	Tri-State (S[15:0] and COM)
1	Rising Edge	0	0	0	0	S0
1	Rising Edge	0	0	0	1	S1
1	Rising Edge	0	0	1	0	S2
1	Rising Edge	0	0	1	1	S3
1	Rising Edge	0	1	0	0	S4
1	Rising Edge	0	1	0	1	S5
1	Rising Edge	0	1	1	0	S6
1	Rising Edge	0	1	1	1	S7
1	Rising Edge	1	0	0	0	S8
1	Rising Edge	1	0	0	1	S9
1	Rising Edge	1	0	1	0	S10
1	Rising Edge	1	0	1	1	S11
1	Rising Edge	1	1	0	0	S12
1	Rising Edge	1	1	0	1	S13
1	Rising Edge	1	1	1	0	S14

Analog Multiplexer

UT16MX110/111/112

						•
1	Rising Edge	1	1	1	1	S15

Operational Environment

Parameter	Limit	Units
Total Ionizing Dose (TID)	300	krad(Si)
Single Event Latchup (SEL)	>110	MeV-cm ² /mg
Single Event Upset Threshold (SEU)	>62.3	MeV-cm ² /mg

Absolute Maximum Ratings ¹

Symbol	Parameter	Limits
AV_DD	Analog Positive Supply Voltage	7.5V
AV _{SS}	Analog Negative Supply Voltage	-0.3V
P _D	Static Power Dissipation	150 mW
Tı	Junction Temperature	-55°C to +130°C
T _{STG}	Storage Temperature	-65°C to +150°C
ESD _{HBM}	Electrostatic Discharge using Human Body Model	2kV

Note:

Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating
only, and functional operation of the device at these or any other conditions beyond limits indicated in the operational
sections of this specification is not recommended. Exposure to absolute maximum rating conditions for extended periods
may affect device reliability and performance.

Recommended Operating Conditions

Symbol	Parameter	Limits
AV_DD	Analog Positive Supply Voltage	4.5V to 5.5V
AV _{SS}	Analog Negative Supply Voltage	0.0V
V _I	Analog Switch Input Voltage	AV _{SS} to AV _{DD}
T _C	Case Operating Temperature Range	-55°C to +125°C
Tı	Junction Operating Temperature ¹	-55°C to +130°C

Note:

1) Thermal resistance, Θ_{JC} , of junction-to-case is 4.8°C/W.

DC Electrical Characteristics 1

 $(AV_{DD}=5.0V \pm 0.5V, GND=0V; -55^{\circ}C \le T_{C} \le +125^{\circ}C)$

Symbol	Parameter	Condition	MIN	TYP	MAX	Unit
V_{IL}	Digital input low		-0.3		0.8	V
V_{IH}	Digital input high		2.0		3.6	V
V _{OL}	Digital output low (UT16MX112)	$I_{OL} = 100 \mu A$			0.2	V
		$I_{OL} = 2mA$			0.4	V
V	Distribution bink (UT1CAN(112)	$I_{OH} = -100 \mu A$	2.8			V
V _{OH}	Digital output high (UT16MX112)	$I_{OH} = -2mA$	2.4			V
R _{ON}	On resistance	V_{IN} = AV _{SS} to AV _{DD} $V_{COM} = V_{IN} - 0.3V$	40	145	300	Ω
I _{OFF}	Analog I/O leakage current (switch off) ²	$AV_{DD} = 5.5V$ $V_{IN} = AV_{SS} \text{ or } AV_{DD}$	-1.6		1.6	μА
I _{IL}	Digital input current low LVCMOS / CMOS inputs Inputs with a pull-up Inputs with a pull-down	$AV_{DD} = 5.5V$ $V_{IL} = GND$	-1.0 -380 -5.0			μ Α μ Α μ Α
Ţ	Digital input current high LVCMOS / CMOS inputs Inputs with a pull-up ³ Inputs with a pull-down	$AV_{DD} = 4.5V$ $V_{IH} = 3.6V$			300 300 200	μ Α μ Α μ Α
I _{IH}	Digital input current high LVCMOS / CMOS inputs Inputs with a pull-up ³ Inputs with a pull-down	$AV_{DD} = 5.5V$ $V_{IH} = 3.0V$	-50		1.0	μ Α μ Α μ Α
Q _{IDD}	Quiescent analog supply current	$AV_{DD} = 5.5V$ $V_{IH} = 3.3V$ $V_{IL} = GND$			3.0	mA

- 1) For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured (see ordering information).
- 2) This parameter cannot be tested on COM for the UT16MX110 device because the pin is continuously on.
- 3) This parameter tested with PLATCH held low on the UT16MX111 device.

AC Electrical Characteristics 1, 2

(AV_{DD}=5.0V \pm 0.5V, GND=0V; -55°C \leq T_C \leq +125°C)

Symbol	Parameter	Condition	MIN	TYP	MAX	Unit
C _{IN}	Input capacitance (switch off) ³	F _{IN} = 1MHz @ 0V		40	50	pF
C _{IN_DIGITAL}	Input digital capacitance ³	F _{IN} = 1MHz @ 0V		46	55	pF
C _{OUT}	Output capacitance at COM ³	F _{IN} = 1MHz @ 0V		68	80	pF
O _{ISO}	Off isolation ⁴	$R_{L} = 600\Omega$ $C_{L} = 50 pF$ $F_{IN} = 1 kHz \text{ sine wave}$			-80	dB
BW	Bandwidth ⁴	$R_{SOURCE} = 50\Omega$ $R_L = 2.2M\Omega$ $C_L = 12pF$ $V_{IN} = 1Vp-p$	51			MHz
X _{TALK2}	Cross talk (Between any 2 Channels) ⁴	$R_{L} = 1k\Omega$ $C_{L} = 50pF$ $F_{IN} = 1kHz \text{ sine wave}$			-80	dB
t _S	Settling time of output at COM within 1% of final output voltage ⁴	$R_L = 100k\Omega$ $C_L = 50pF$			120	ns
THD	Total Harmonic Distortion ⁴	$R_L = 1k\Omega$ $C_L = 50pF$ $F_{IN} = 1MHz \text{ sine wave } V_{IN}$ $= 5Vp-p$			5.0	%

- 1) For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured (see ordering information).
- 2) Continuous operation with low load resistance is not recommended. (See Figure 12)
- 3) Parameters guaranteed by characterization.
- 4) Parameters guaranteed by design.

Timing Characteristics (UT16MX110) 1,2

 $(AV_{DD}=5.0V \pm 0.5V, GND=0V; -55^{\circ}C \le T_{C} \le +125^{\circ}C)$

Symbol	Parameter	Condition	MIN	TYP	MAX	Unit
t _{PROP_} s	Propagation delay of analog input (S[x]) to analog output (COM) measured at 50%	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 10 & 13			25	ns
t _{PROP_D}	Propagation delay of any changes in the digital inputs (A[3:0], \overline{CS} , PLATCH, \overline{SS}) affecting the analog output (COM)	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 5 & 13	25		140	ns
t _{MUX}	Mux decoding time	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 5 & 13			50	ns
t _{ввм}	Break-Before-Make-Delay	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 5 & 13	15		90	ns
t _{AS1}	The minimum amount of time required for the address signals (A[3:0]) to be stable before the falling edge of $\overline{\text{CS}}^3$	See Figure 5	3.0			ns
t _{AS2}	The minimum amount of time required for the address signals (A[3:0]) to be stable after the rising edge of $\overline{\text{CS}}^3$	See Figure 5	5.0			ns

- 1) For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured (see ordering information).
- 2) Continuous operation with low load resistance is not recommended. (See Figure 12)
- 3) Parameters guaranteed by design.

Timing Characteristics (UT16MX111) 1, 2

 $(AV_{DD}=5.0V \pm 0.5V, GND=0V; -55^{\circ}C \le T_{C} \circ C +125^{\circ}C)$

Symbol	Parameter	Condition	MIN	TYP	MAX	Unit
t _{PROP_} s	Propagation delay of analog input (S[x]) to analog output (COM) measured at 50%	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 10& 13			25	ns
t _{PROP_D}	Propagation delay of any changes in the digital inputs (A[3:0], $\overline{\text{CS}}$, PLATCH, $\overline{\text{SS}}$) affecting the analog output (COM)	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 6 & 13	25		140	ns
t _{MUX}	Mux decoding time	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 6 & 13			50	ns
t _{ввм}	Break-Before-Make-Delay	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 6 & 13	15		90	ns
t _{PZLH}	Output enable time from HiZ to low or high once RESET is pulled high	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 9 & 13			90	ns
t _{PLHZ}	Output disable time from low or high to HiZ once RESET is pulled low	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 9 & 13			55	ns
t _{LSU}	Address setup time wrt rising edge PLATCH	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 6 & 13	5.0			ns
t _{LHD}	Address hold time wrt rising edge PLATCH	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 6 & 13	10			ns

- 1) For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured (see ordering information)
- 2) Continuous operation with low load resistance is not recommended. (See Figure 12)

Timing Characteristics (UT16MX112) 1,2

 $(AV_{DD}=5.0V \pm 0.5V, GND=0V; -55^{\circ}C \le T_{C} \le +125^{\circ}C)$

Symbol	Parameter	Condition	MIN	TYP	MAX	Unit
t _{PROP_S}	Propagation delay of analog input (S[x]) to analog output (COM) measured at 50%	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 10 & 13			25	ns
t _{PROP_D}	Propagation delay of any changes in the digital inputs (A[3:0], \overline{CS} , PLATCH, \overline{SS}) affecting the analog output (COM)	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 7 & 13	25		140	ns
t _{MUX}	Mux decoding time	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 7 & 13			50	ns
t _{BBM}	Break-Before-Make-Delay	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 7 & 13	15		90	ns
t _{PZLH}	Output enable time from HiZ to low or high once RESET is pulled high	$R_T = 50\Omega$ $C_L = 50pF$ See Figures 9 & 13			90	ns
t _{PLHZ}	Output disable time from low or high to HiZ once RESET is pulled low	$R_T = 50\Omega$ $C_L = 50 pF$ See Figures 9 & 13			55	ns
f _{SCLK}	SCLK frequency	See Figure 7			2.0	MHz
t _H	SCLK high time	See Figure 7	190			ns
t _L	SCLK low time	See Figure 7	190			ns
t _{SSU}	First SCLK setup time (for shifting window)	See Figure 7	6.0			ns
t _{SSH}	Last SCLK hold time (for shifting window)	See Figure 7	10			ns
t _{su}	Data in (MOSI) setup time wrt rising edge SCLK	See Figure 7	3.0			ns
t _{HD}	Data in (MOSI) hold time wrt rising edge SCLK	See Figure 7	5.0			ns
t _{DO}	Data out (MISO) valid (after falling edge of SCLK)	$C_L = 50pF$ See Figure 7			43	ns
t _{DR}	Data out (MISO) rise time	10-90% of 3V_OUT $C_L = 50pF$			30	ns
t _{DF}	Data out (MISO) fall time	10-90% of 3V_OUT $C_L = 50pF$			20	ns

- 1) For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 Method 1019, Condition A up to the maximum TID level procured (see ordering information).
- 2) Continuous operation with low load resistance is not recommended. (See Figure 12).

Analog Multiplexer

UT16MX110/111/112

Timing Diagrams

Multiplexer Asynchronous Parallel Timing (UT16MX110)

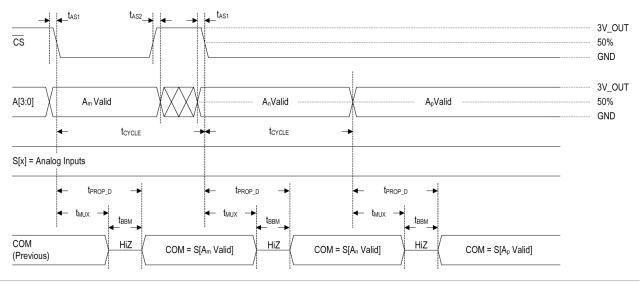


Figure 5. UT16MX110 Timing Diagram

Notes:

- 1) $\overline{\text{CS}}$ may be held in a continuous low state, holding $\overline{\text{CS}}$ high provides protection for false address change.
- 2) t_{CYCLE} is the minimum cycle time between the falling edges of $\overline{\text{CS}}$ and/or any address changes. If t_{CYCLE} is shorter than t_{PROP D}, an addressing error may occur.
- 3) All bits (A[3:0]) of any address change should be received by the MUX within 18ns of the first bit change for proper operation.

Multiplexer Synchronous Parallel Timing (UT16MX111)

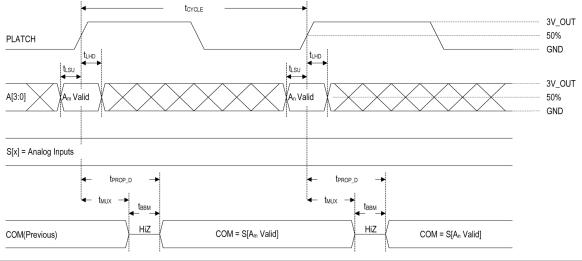


Figure 6. UT16MX111 Timing Diagram

Notes:

1) When PLATCH is in a high or low state, it provides protection for false address change.

2) tcycle must not be less than the maximum value of tprop_D.

Multiplexer Serial Timing (UT16MX112)

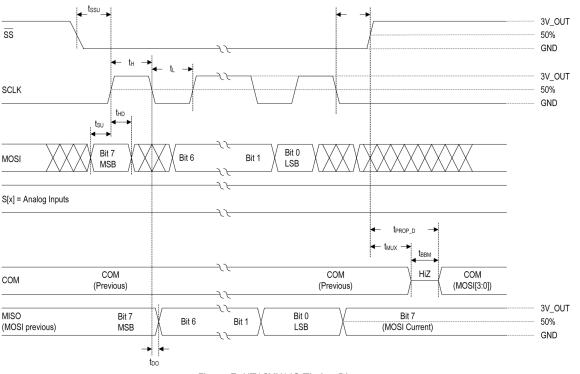


Figure 7. UT16MX112 Timing Diagram

SPI™ Protocol (UT16MX112)

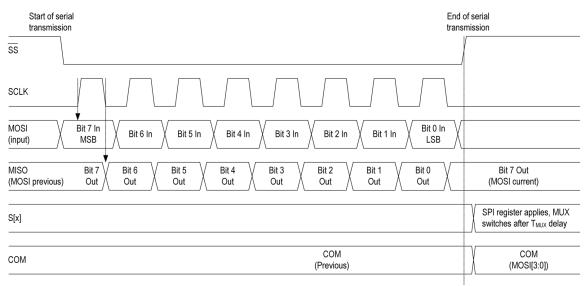


Figure 8. SPI™ Protocol Timing

Note:

1) See figure 7, Multiplexer Serial Timing (UT16MX112), for detailed timing.

Multiplexer RESET Enable/Disable (UT116MX111/112)

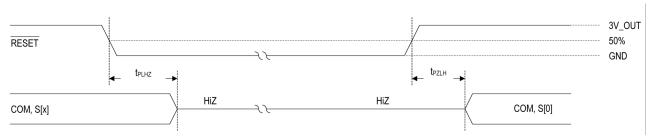


Figure 9. RESET Timing Diagram (Used for UT116MX111/112 only)

Note:

1) S[x] represents the analog signal channel connected to COM prior to the falling edge of RESET.

Multiplexer Analog Timing (UT16MX110/111/112)

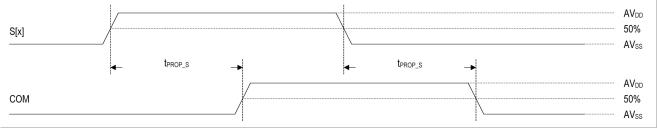
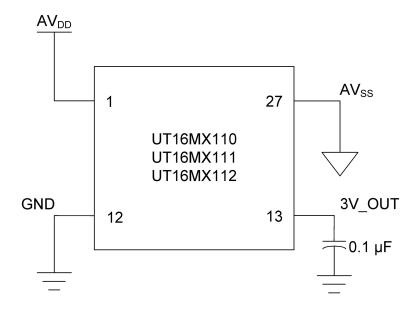



Figure 10. Analog Timing Diagram (Used for UT16MX110/111/112)

Note:

1) S[x] represents the analog signal channel connected to COM while in active mode of all device types with the address already set and all digital inputs held constant.

Power Supply Requirements Schematic (UT16MX110/111/112)

Analog Multiplexer

UT16MX110/111/112

Figure 11. Power Supply Requirements

Note:

1) Bypass capacitor of $0.1\mu F$ required on $3V_OUT$ for proper operation.

Minimum Multiplexer Total Path Resistance (UT16MX110/111/112)

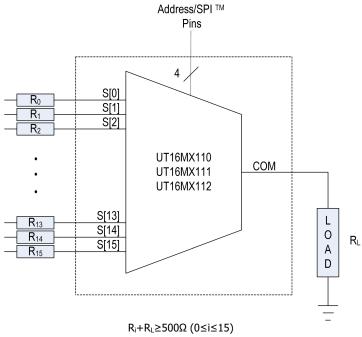


Figure 12. Minimum Total Path Resistance for Continuous DC Operation on Any Single Channel

Note:

1) Continuous DC operation on any single channel where $R_i + R_L < 500\Omega$ will degrade device reliability and performance.

Multiplexer Load Conditions for Test (UT16MX110/111/112)

Analog Multiplexer

UT16MX110/111/112

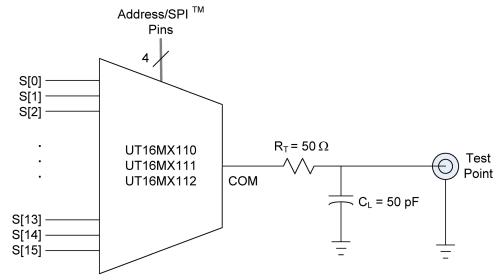


Figure 13. UT16MX110/111/112 Test Circuit

Packaging

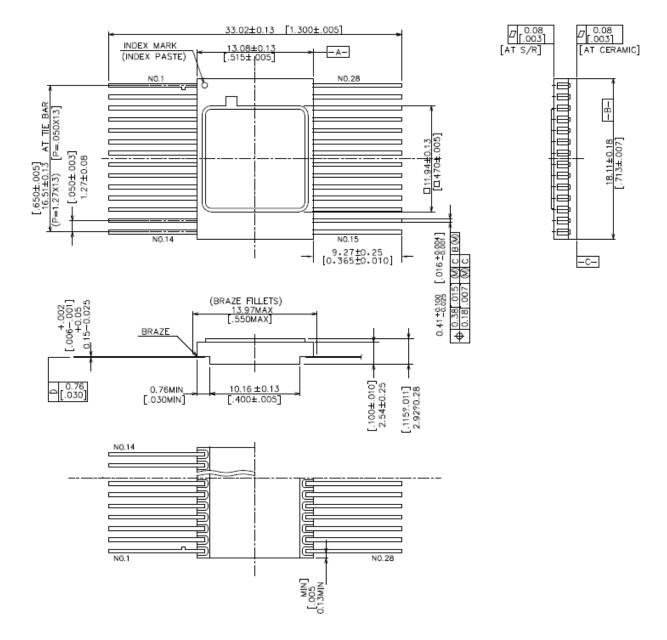
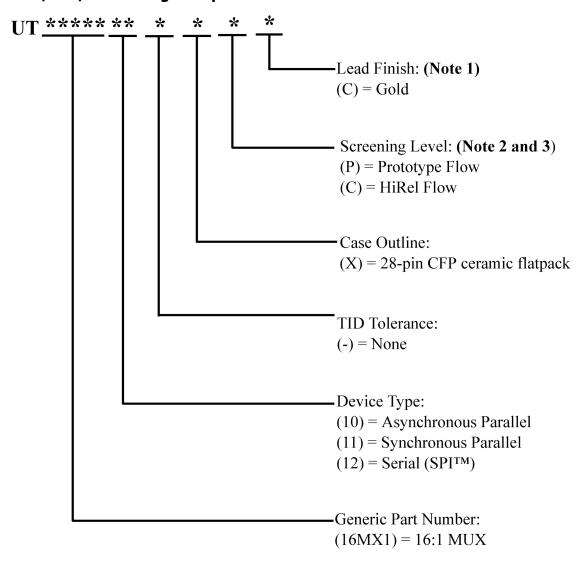


Figure 14. 28-Lead Ceramic Flat Package

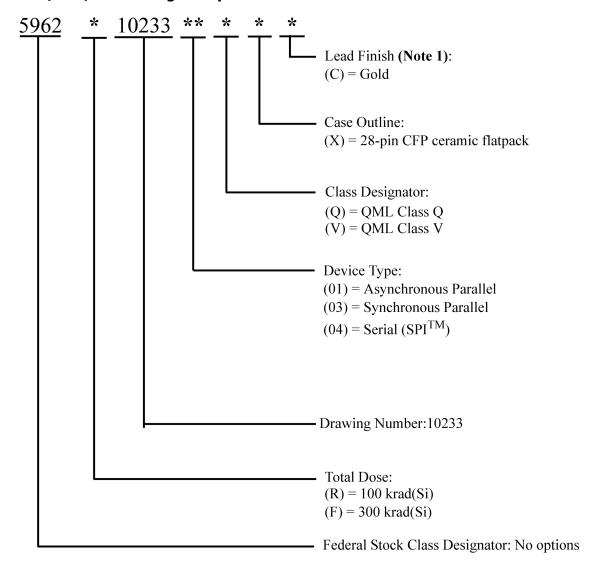
- 1) Gold plated 100 to 225 microinches over electroplated nickel 100 to 350 microinches per MIL-PRF-38535.
- 2) Seal ring is electrically connected to VSS.


Trademarks:

SPI™ /QSPI™ are trademarks of Motorola, Inc.

MICROWIRE™ is a trademark of National Semiconductor

Ordering Information


UT16MX110/111/112 Analog Multiplexer

- 1) Lead finish is "C" (Gold) only.
- 2) Prototype flow per CAES Manufacturing Flows Document. Devices are tested at 25°C only. Lead finish is Gold "C" only. Radiation neither tested nor guaranteed.
- 3) HiRel flow per CAES Manufacturing Flows Document.

UT16MX110/111/112 Analog Multiplexer: SMD

Note:

1) Lead finish is "C" (Gold) only.

Datasheet Revision History

10-18	Page 2: Functional Description edits UT16MX110:	BM
	UT16MX110 requires the following operation in order to properly initialize the part following powerup: All address states for the A[3;0] address lines must be exercised following AVDD power-up to	
	ensure correct addressing. Once this operation has been completed, normal asynchronous	
	addressing can then be used to select the desired input channel (i.e. one of S[15:0]) to connect to the COM output. The S[15:0] analog channels are routed asynchronously via the binary decoding of	
	A[3:0] static logic levels after initialization.	

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

