SCD5912

Quad Comparator, Open Drain Outputs

RHD5912

Features

- Single power supply operation at 5.0V
- Radiation performance
 - Total dose:

- SEL Immune

- ELDRS Immune
- > 100 MeV-cm²/mg

> 1 Mrad(Si); Dose rate = 50-300 rad(Si)/s

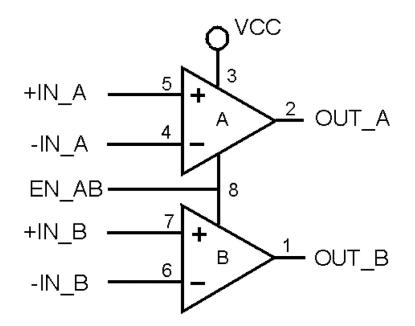
- Neutron Displacement Damage > 10¹⁴ neutrons/cm²
- Short Circuit Tolerant
- Full military temperature range
- Designed for aerospace and high reliability space applications
- Packaging Hermetic ceramic SOIC
 - 16-pin, .417"L x .300"W x .120"Ht
 - Weight 0.8 grams max
- Radiation Hardness Assurance Plan: DLA Certified to MIL-PRF-38534, Appendix G.

General Description

The RHD5912 is a radiation hardened, single supply, quad comparator with open drain outputs in a 16-pin SOIC package. The RHD5912 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5912 particularly suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Screened in accordance with MIL-PRF-38534 Class K, the RHD5912 is ideal for demanding military and space applications.

Organization and Application

The RHD5912 quad comparator is intended for operation with dynamic signals on either or both inputs. Comparison is 'continuous', that is, the circuit functions as high gain open loop amplifiers with a digital output. For slow input signals with small input differences, the comparators can be expected to respond to small noise signals at the inputs. Although there is internal hysteresis, feedback hysteresis is the responsibility of the user to avoid 'chattering' on system noise.


The comparator will accept signals anywhere in the included power supply range. The circuit delay is specified for a half-volt single ended or differential input step of either polarity, ending in an input polarity reversal of 10mV. See Switching Diagrams.

CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected.

The devices will not latch with SEU events above 100 Mev-cm²/mg. Total dose degradation is minimal to above 1 Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10¹⁴ neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.

RHD5912

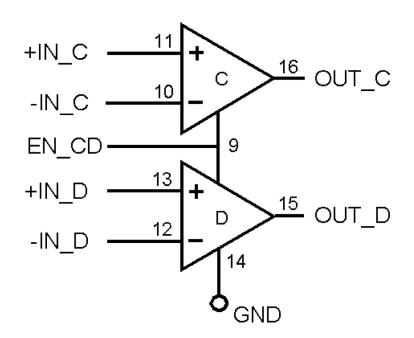
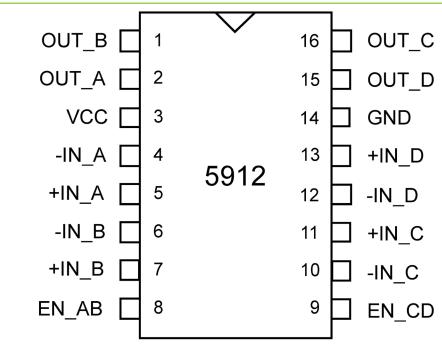



Figure 1: Block Diagram

RHD5912

16-Pin SOIC Figure 2: Package Pin-Out

Notes:

- 1) Package and lid are electrically isolated from signal pads.
- 2) It is recommended that the Lid be grounded to prevent any ESD or static buildup.
- 3) EN_AB enables Comparators A & B. EN_CD enables Comparators C & D.

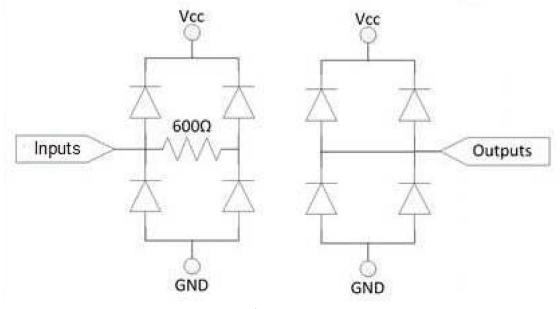


Figure 3: Diode Protection Circuits Diagram

REV G: 03/26/21

SCD5912

Quad Comparator, Open Drain Outputs

RHD5912

Pin	Signal Name	Definition
1	OUT_B	Output of Comparator B.
2	OUT_A	Output of Comparator A.
3	VCC	DC Supply Voltage.
4	-IN_A	Inverting input of Comparator A.
5	+IN_A	Non-Inverting input of Comparator A.
6	-IN_B	Inverting input of Comparator B.
7	+IN_B	Non-Inverting input of Comparator B.
8	EN_AB	A Logic Low will disable Comparator A & B so that the outputs are high impedance.
9	EN_CD	A Logic Low will disable Comparator C & D so that the outputs are high impedance.
10	-IN_C	Inverting input of Comparator C.
11	+IN_C	Non-Inverting input of Comparator C.
12	-IN_D	Inverting input of Comparator D.
13	+IN_D	Non-Inverting input of Comparator D.
14	GND	DC Supply Return.
15	OUT_D	Output of Comparator D.
16	OUT_C	Output of Comparator C.

Figure 4: Pin-Out Description

REV G: 03/26/21

SCD5912 Quad Comparator, Open Drain Outputs

RHD5912

Absolute Maximum Ratings

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
Supply Voltage (+V _{CC})	+7.0	V
Input Voltage	V _{CC} +0.4 GND -0.4	V V
Input Current	±10	mA
Lead Temperature (soldering, 10 seconds)	300	°C
Thermal Resistance, Junction-to-Case OJC	7	°C/W
Power @ 25°C	250	mW

Notice: Stresses listed in the "Absolute Maximum Ratings" table above may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Recommended Operation Conditions" is not recommended and extended exposure beyond the "Recommended Operation Conditions" in the table below may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Typical	Units
+V _{CC}	Power Supply Voltage	+5.0	V
Vсм	Input Common Mode Range	(V _{CC} - 1.5) to GND	V

RHD5912

Electrical Performance Characteristics

($T_C = -55^{\circ}C To + 125^{\circ}C$, $+V_{CC} = +5.0V$ -- Unless Otherwise Specified)

Parameter	Symbol	Conditions	MIN	MAX	Units
Quiescent Supply Current 1/	Ŧ	$E_N = 1$, No Load		3	mA
Quiescent Supply Current <u>1</u> /	Iccq	$E_{\rm N} = 0 \ \underline{2}/$		300	nA
Input Offset Voltage	M	<u>4</u> /	-20	20	
Input Offset Voltage	Vos	1/	-35	35	mV
Input Offset Current <u>1</u> /, <u>3</u> /	Ios	T _C = +25°C, +125°C	-10	10	nA
Input Bias Current <u>1</u> /, <u>3</u> /	I_{B}	T _C = +25°C, +125°C	-10	10	nA
Common Mode Rejection Ratio 1/	CMRR		50		dB
Power Supply Principa Patio	PSRR	4/	70		dB
Power Supply Rejection Ratio		1/	60		
		Iout = 5mA		0.25	V
Output Voltage Low <u>1</u> /	V _{OL}	I _{OUT} = 10mA		0.50	V
		I _{OUT} = 20mA		1.00	V
Gain <u>1</u> /	А		5		V/mV
Output Lookage Current 2/		$V_{OUT} = V_{CC}, T_C = +25^{\circ}C, +125^{\circ}C \underline{4}/$		100	
Output Leakage Current <u>3</u> /		1/		5000	nA
Short Circuit Output Current 2/	IO(SINK)		-35	-60	mA
Input Voltage - Enable (EN_AB,	V _{HI}	High (Enabled)	3.5		V
EN_CD)	Vlo	Low (Disabled)		1.5	V
Input Current - Enable (EN_AB, EN_CD) <u>3</u> /	I _{EN}	Tc = +25°C, +125°C		10	nA

Notes:

1) Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ 25°C.

2) Not tested. Shall be guaranteed by design, characterization or correlation to other test parameters.

3) Subgroup 3 for these parameters is guaranteed, but not production tested.

4) Specification derated to reflect Pre-irradiation to Total Dose exposure 500krad(Si) @ 25°C.

Switching Characteristics

 $(T_c = -55^{\circ}C To + 125^{\circ}C, +V_{cc} = +5.0V - Unless Otherwise Specified)$

Parameter	Symbol	Conditions	MIN	MAX	Units
Output Delay (Switching)	TOUT	<u>1</u> /		300	ns
Output Delay (Enabled)	tonEN			500	ns
Output Delay (Disabled)	toffEN			100	ns

Note:

1) The circuit delay is specified for a half-volt single ended or differential input step, of either polarity, ending in an input polarity reversal of 10mV.

RHD5912

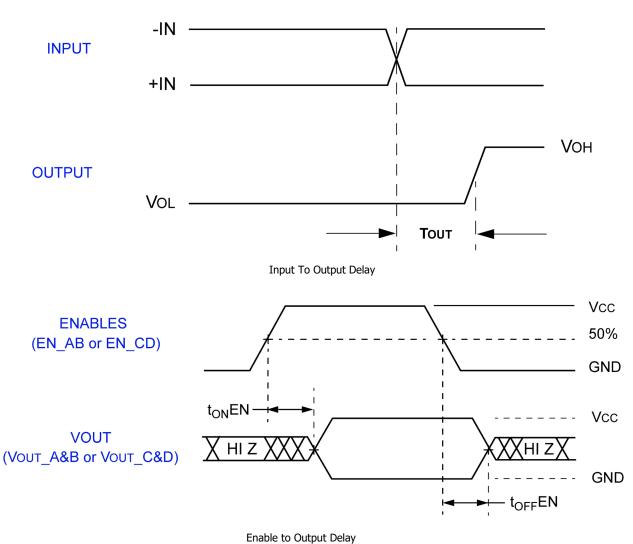
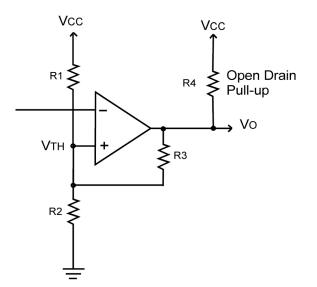
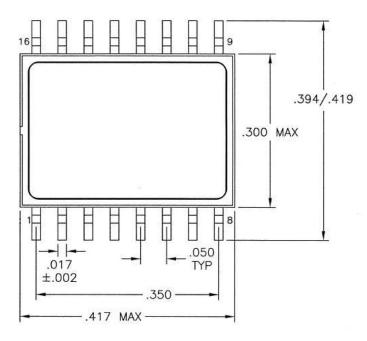


Figure 5: RHD5912 Switching Diagrams



RHD5912


Thresho	old Volt	<u>age</u>
V _{TH} =	Vcc—	R2
v in -	R	1 + R2

Hysteresis Calculation

 $HYS = VO\frac{R2}{R2 + R3}$

Application Note 1: Hysteresis

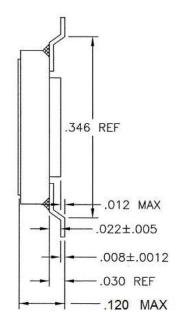


Figure 6: Package Outline

Note: Package and lid are electrically isolated from signal pads.

RHD5912

Ordering Information

Model	DLA SMD #	Screening	Package
RHD5912-7	-	Commercial Flow, +25°C testing only	
RHD5912-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	16-pin SOIC
RHD5912- 201-1S	5962-1024203KXC	In accordance with DLA SMD	Package
RHD5912- 201-2S	5962-1024203KXA		
RHD5912- 901-1S	5962H1024203KXC	In accordance with DLA Certified RHA Program Plan to	
RHD5912- 901-2S	5962H1024203KXA	RHA Level "H", 1 Mrad(Si)	

Revision History

Date	Revision	Change Description
03/28/2016	D	Import into CAES format
06/16/2017	E	Remove references to 3.3 volt, Add Input Current to Absolute Max table.
07/20/2017	F	Add limits for 1Mrad (Si) TID to: Input Offset Voltage, PSRR, Output Leakage Current. Change Vol (10mA) to 0.50v, add Figure 3: Diode Protection Circuit, rename Pin Out table to Figure 4, rename Switching Diagram to Figure 5, rename Package Outline to Figure 6

RHD5912

Revision History

Date	Revision	Change Description
03/26/2021	G	Revised per ECN 23566.

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Long Island Inc. d/b/a CAES reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

