RHD5901

Features

- Single power supply operation (3.3V to 5.0V) or dual power supply operation (±1.65 to ±2.5V)
- Radiation performance
 - Total dose:
 - ELDRS Immune

- >1 Mrad(Si); Dose rate = 50-300 rad(Si)/s
- SEL Immune

>100 MeV-cm²/mg

- Neutron Displacement Damage
- >10¹⁴ neutrons/cm²
- Rail-to-Rail input and output range
- Enable pin to Enable/Disable amplifiers in pairs.
- Short Circuit Tolerant
- Full military temperature range
- Designed for aerospace and high reliability space applications
- Packaging Hermetic ceramic SOIC
 - 16-pin, .417"L x .300"W x .120"Ht
 - Weight 0.8 grams max
- Radiation Hardness Assurance Plan: DLA Certified to MIL-PRF-38534, Appendix G.

General Description

The RHD5901 is a radiation hardened, single supply, quad operational amplifier with enable in a 16-pin SOIC package. The RHD5901 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5901 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5901 is ideal for demanding military and space applications.

Organization and Application

The RHD5901 amplifiers are capable of rail-to-rail input and outputs. Performance characteristics listed are for general purpose operational 5V CMOS amplifier applications. The amplifiers will drive substantial resistive or capacitive loads and are unity gain stable under normal conditions. Resistive loads in the low kohm range can be handled without gain derating and capacitive loads of several nF can be tolerated. CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected.

The devices will not latch with SEU events to above 100 MeV-cm²/mg. Total dose degradation is minimal to above 1 Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10¹⁴ neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.

The RHD5901 is configured with enable/disable control. Pairs of amplifiers are put in a power-down condition with their outputs in a high impedance state. Several useful operational amplifier configurations are supported where more than one amplifier can feed an output with others disabled.

RELEASED 3/28/16

Quad Operational Amplifier with Hi Z Output Control

RHD5901

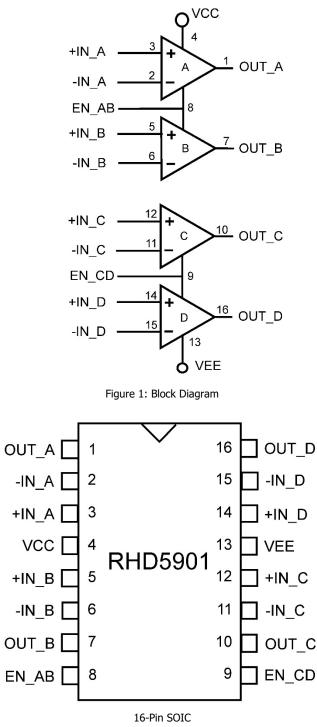


Figure 2: Package Pin-Out

Notes:

- 1) Package and lid are electrically isolated from signal pads.
- 2) EN_AB enables amplifiers A & B. EN_CD enables amplifiers C & D.

RHD5901

Absolute Maximum Ratings

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
Supply Voltage V _{CC} - V _{EE}	+7.0	v
Input Voltage	V _{CC} +0.4 V _{EE} -0.4	v
Lead Temperature (soldering, 10 seconds)	300	°C
Thermal Resistance, Junction to Case, Ojc	7	°C/W
Power @ 25°C	200	mW

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Typical	Units
+V _{CC}	Power Supply Voltage	3.3 to 5.0	V
Vсм	Input Common Mode Range	V _{CC} to V _{EE}	V

RELEASED 3/28/16

Quad Operational Amplifier with Hi Z Output Control

RHD5901

Electrical Performance Characteristics

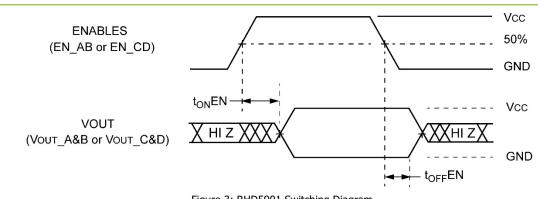
(Tc = -55°C To +125°C, +Vcc = +5.0V -- Unless Otherwise Specified)

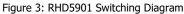
Parameter	Symbol	Conditions	MIN	ТҮР	MAX	Units
Quiescent Supply Current <u>1</u> /	Issa	EN = 1, No Load		4.7	5.5	mA
	I _{CCQ}	EN = 0, <u>2</u> /			300	nA
Input Offset Voltage <u>1</u> /	Vos		-3	0.80	3	mV
Input Offset Current <u>1</u> /	I _{OS}		-100	10	100	pА
Input Pize Current	T_	Tc = +25°C, -55°C <u>1</u> /	-100	10	100	
Input Bias Current	IB	Tc = +125°C	-1000	100	1000	рА
Common Mode Rejection Ratio	CMRR		70	90		dB
Power Supply Rejection Ratio	PSRR		70	90		dB
Output Voltage High	Vон	R _{OUT} = 3.6 Kohms to GND	4.9			V
Output Voltage Low	Vol	Rout = 3.6 Kohms to Vcc			0.1	V
Chart Circuit Output Current 2/	Io(sink)	Vout to Vcc	-30		-75	mA
Short Circuit Output Current <u>2</u> /	I _{O(SOURCE)}	V _{OUT} to V _{EE}	45		55	mA
Slew Rate <u>1</u> /	SR	R _L = 8K, Gain = 1	2.0	3.3		V/uS
Open Loop Gain <u>1</u> /	Aol	No Load	90	100		dB
Unity Gain Bandwidth <u>1</u> /	UGBW	R _L = 10K	4	6.5		MHz
Input Voltage - Enable (EN_AB,	VHI	High (Enabled)	3.5			V
EN_CD)	V _{LO}	Low (Disabled)			1.5	V
Input Current - Enable (EN_AB, EN_CD)	I _{EN}				10	nA
Channel Separation 2/		R _L = 2K, f = 1.0KHz	84			dB
Input-Referred Voltage Noise 2/	en	F = 5 kHz		15		nV/√Hz
Phase Margin <u>2</u> /	Φ_{m}	Tc = +25°C, No load	30			Deg

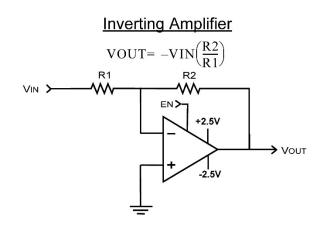
Notes:

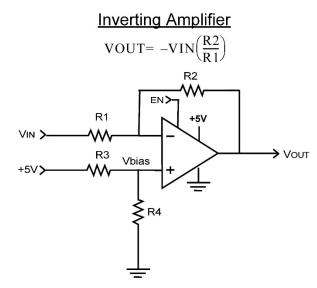
- 1) Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ +25°C
- 2) Not tested. Shall be guaranteed by design, characterization, or correlation to other test parameters.

Switching Characteristics


($T_c = -55^{\circ}C$ to $+125^{\circ}C$, $+V_{cc} = +5.0V$ -- Unless Otherwise Specified)


Parameter	Symbol	Conditions	MIN	MAX	Units
Output Delay (Enabled) 2/	t _{on} EN			500	ns
Output Delay (Disabled) 2/	toffEN			100	ns


RHD5901


RHD5901 Quad Operational Amplifier Application Notes

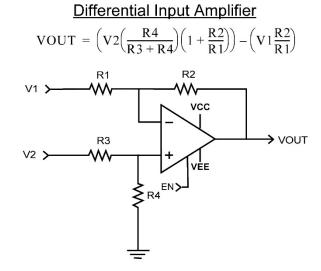
Application Note 1: Dual Power Supply Amplifier

Non Inverting Amplifier VOUT= VIN $\left(1 + \frac{R2}{R1}\right)$ VIN +2.5V -2.5V R2 R1

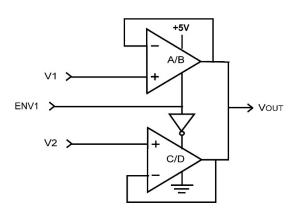
Application Note 2: Single Power Supply Amplifier

Non Inverting Amplifier VOUT= VIN $\left(1 + \frac{R2}{R1}\right)$ VIN R3 VIN R4 R4 R4 R4 R4 R1 R1

Note: For V_{OUT} DC @ mid range of common mode voltage range, $V_{BIAS} = 2.5/(1+R2/R1)$, $V_{BIAS} = +5*R4/(R3+R4)$



Application Note 3:


Differential Input Amplifier

RHD5901

Application Note 4: Multiple Amplifier

Multiple Amplifiers - Selectable Output

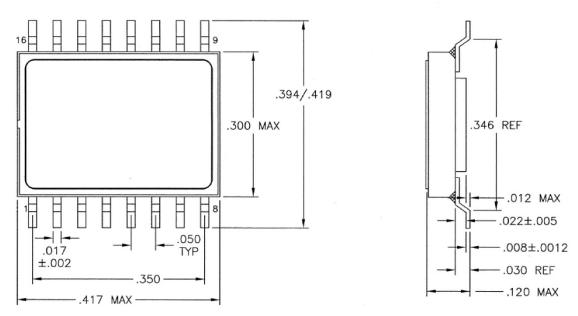


Figure 4: Package Outline

Note:

Package and lid are electrically isolated from signal pads.

RHD5901

Ordering Information

Model	DLA SMD #	Screening	Package
RHD5901-7	-	Commercial Flow, +25°C testing only	
RHD5901-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	16-pin SOIC
RHD5901-201-1S	5962-1024102KXC	In accordance with DLA SMD	Package
RHD5901-201-2S	5962-1024102KXA		
RHD5901-901-1S	5962H1024102KXC	C In accordance with DLA Certified RHA Program Plan to RHA	
RHD5901-901-2S	5962H1024102KXA	Level "H", 1 Mrad(Si)	

Revision History

Date	Revision	Change Description
03/28/2016	G	Import into CAES format

RHD5901

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Long Island Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

