RHD5900

Features

- Single power supply operation at 3.3V or 5.0V
- Radiation performance
 - Total dose: >1 Mrad(Si); Dose rate = 50-300 rad(Si)/s
 - ELDRS Immune
 - SEL Immune >100 MeV-cm²/mg
 - Neutron Displacement Damage $>10^{14}$ neutrons/cm²
- Rail-to-Rail input and output range
- Short Circuit Tolerant
- Full military temperature range
- Designed for aerospace and high reliability space applications
- Packaging Hermetic ceramic SOIC
 - 16-pin, .417"L x .300"W x .120"Ht
 - Weight 0.8 grams max
- Radiation Hardness Assurance Plan: DLA Certified to MIL-PRF-38534, Appendix G.

General Description

The RHD5900 is a radiation hardened, single supply, quad operational amplifier in a 16-pin SOIC package. The RHD5900 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5900 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5900 is ideal for demanding military and space applications.

Organization and Application

The RHD5900 amplifiers are capable of rail-to-rail input and outputs. Performance characteristics listed are for general purpose CMOS operational amplifier applications at $3.3V \pm 10\%$ and $5V \pm 10\%$. The amplifiers will drive substantial resistive or capacitive loads and are unity gain stable under normal conditions. Resistive loads in the low kohm range can be handled without gain derating and capacitive loads of several nF can be tolerated. CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected.

The devices will not latch with SEU events to above 100 MeV-cm²/mg. Total dose degradation is minimal to above 1 Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10¹⁴ neutrons per cm² range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.

Quad Operational Amplifier

RHD5900

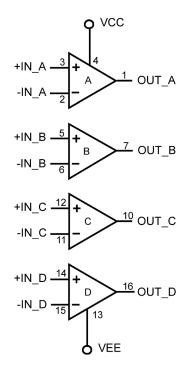
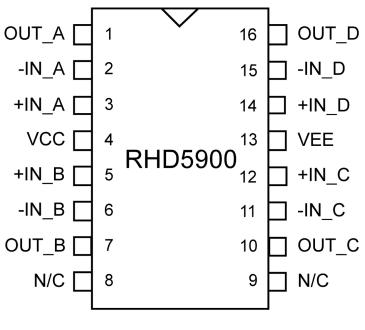



Figure 1: Block Diagram

16-Pin SOIC Figure 2: Package Pin-out

Notes:

- 1) Package and lid are electrically isolated from signal pads.
- 2) It is recommended that N/C or no connect pins (pins 8 and 9) and lid be grounded. This eliminates or minimizes any ESD or static buildup.

Quad Operational Amplifier

RHD5900

RHD5900 Pin-Out & Signal Definitions

Pin #	Signal	Function	
1	OUT_A	Output of section A	
2	-IN_A	Inverting input of section A	
3	+IN_A	Non-inverting input of section A	
4	VCC	Positive power supply	
5	+IN_B	Non-inverting input of section B	
6	-IN_B	Inverting input of section B	
7	OUT_B	Output of section B	
8	N/C	No Connect	
9	N/C	No Connect	
10	OUT_C	Output of section C	
11	-IN_C	Inverting input of section C	
12	+IN_C	Non-inverting input of section C	
13	VEE	Power supply Return	
14	+IN_D	Non-inverting input of section D	
15	-IN_D	Inverting input of section D	
16	OUT_D	Output of section D	

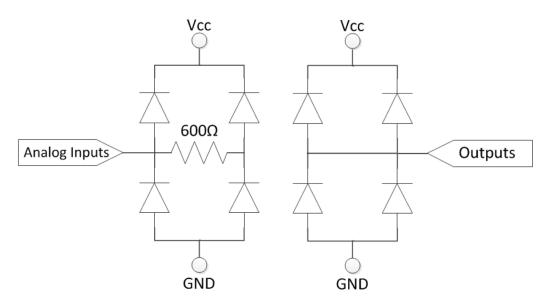


Figure 3: Diode Protection Circuits Diagram

RHD5900

Absolute Maximum Ratings

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
Supply Voltage V _{CC} - V _{EE}	+7.0	V
Input Voltage	V _{CC} + 0.4 V _{EE} - 0.4	V
Lead Temperature (soldering, 10 seconds)	300	°C
Thermal Resistance, Junction to Case, Θ jc	7	°C/W
Power @25°C	200	mW
ESD per MIL-STD-883, Method 3015, Class 2	2,000 to 3,999	V

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

Recommended Operating Conditions

Symbol	Parameter	Typical	Units
+V _{CC}	Power Supply Voltage	3.3 to 5.0	V
V _{CM}	Input Common Mode Range	V_{CC} to (V_{EE} = GND)	V

Quad Operational Amplifier

RHD5900

Electrical Performance Characteristics IA

Parameter	Symbol	Conditions $V_{CC} = 3.3V \pm 10\%, V_{EE} = GND$	Temperature	MIN	ΜΑΧ	Units	
			+25°C	-	3.5		
Quiescent Supply Current	\mathbf{I}_{CCQ}	No Load	+125°C	-	3.4	mA	
			-55°C	-	3.3		
Input Offset Voltage	Vos		+25°C	-2.2	2.2	mV	
Input Onset Voltage	VOS		+125°C, -55°C	-2.8	2.8		
Input Offset Current	Ios		+25°C, -55°C	-75	75	pА	
	105		+125°C	-100	100	рА	
Input Bize Current	т		+25°C, -55°C	-75	75	۳Å	
Input Bias Current	I _B		+125°C	-500	500	рА	
			+25°C	64			
Common Mode Rejection Ratio	CMRR		+125°C	69		dB	
			-55°C	53			
Power Supply Rejection Ratio	PSRR		+25°C	55		dB	
	PSKK		+125°C, -55°C	50		UD	
Output Voltage High	V _{OH}	R _{OUT} =3.6K to GND	All	Vcc1		V	
		R _{OUT} =3.6K to V _{CC}	+25°C		0.080		
Output Voltage Low	Vol		+125°C		0.095	V	
			-55°C		0.07		
			+25°C	2.1			
Slew Rate	SR	$R_L = 8K$, Gain = 1	+125°C	2.0		V/uS	
			-55°C	1.9			
			+25°C	97			
Open Loop Gain	A _{OL}	No Load	+125°C	91		dB	
			-55°C	94			
			+25°C	3.7			
Unity Gain Bandwidth	UGBW	$R_L = 10K$	+125°C	2.4		MHz	
			-55°C	4.3			

Quad Operational Amplifier

RHD5900

Electrical Performance Characteristics IB

Parameter	Symbol	Conditions $V_{CC} = 5.0V \pm 10\%$, $V_{EE} = GND$ Unless Otherwise Specified	Temperature	MIN	MAX	Units	
Quiescent Supply Current	T	No Load	+25°C	-	4.5	mA	
Quiescent Supply Current	I _{CCQ}		+125°C, -55°C	-	4.4	IIIA	
Input Offset Voltage	V _{os}		+25°C	-2.5	2.5	m\/	
Input Onset Voltage	VOS		+125°C, -55°C	-2.8	2.8	mV	
Input Offset Current	Ios		+25°C, -55°C	-75	75	рА	
Input Onset Current	105		+125°C	-100	100	рА	
Input Piac Current	I _B		+25°C, -55°C	-75	75	۳Å	
Input Bias Current	IB		+125°C	-500	500	рА	
Common Mada Bajactian Batia	CMRR		+25°C	73		- dB	
Common Mode Rejection Ratio	CMIKK		+125°C, -55°C	71		ub	
Power Supply Rejection Ratio	PSRR		+25°C	73		dP	
			+125°C, -55°C	71		- dB	
Output Voltage High	V _{OH}	R _{OUT} =3.6K to GND	All	Vcc1		V	
	V _{OL}	R _{OUT} =3.6K to V _{CC}	+25°C		0.09	V	
Output Voltage Low			+125°C		0.105		
			-55°C		0.080		
Short Circuit Output Current 1/	I _{O(SINK)}	V_{OUT} to V_{CC} , ($V_{CC} = 5.0V$)	All	-30	-75	mA	
Short Circuit Output Current <u>1</u> /	I _{O(SOURCE)}	V_{OUT} to GND, ($V_{CC} = 5.0V$)	All	45	55	mA	
		R _L = 8K, Gain = 1	+25°C	2.5			
Slew Rate	SR		+125°C	2.2		V/uS	
			-55°C	2.5			
			+25°C	97			
Open Loop Gain	A _{OL}	No Load	+125°C	92		dB	
			-55°C	95			
			+25°C	4.5			
Unity Gain Bandwidth	UGBW	$R_L = 10K$	+125°C	3.1		MHz	
			-55°C	5.4			
Channel Separation <u>1</u> /		$R_L = 2K$, f = 1.0KHz, ($V_{CC} = 5.0V$)	All	84		dB	
Input-Referred Voltage Noise 1/	en	F = 5 kHz, (V _{CC} = 5.0V)	All	15	15	nV/\sqrt{Hz}	
Phase Margin <u>1</u> /	Φm	No Load, ($V_{CC} = 5.0V$)	+25°C	30		Deg	

Note:

1) Not Tested. Shall be guaranteed by design, characterization, or correlation to other test parameters.

RHD5900

Radiation Electrical Performance Characteristics IIA

 $(T_{C} = +25^{\circ}C, +V_{CC} = +3.3V \pm 10\%, V_{EE} = GND)$

Parameter	Symbol	Test Conditions	MIN / MAX	100 krad(Si) <u>1</u> /	300 krad(Si) <u>2</u> /	650 krad(Si) <u>3</u> /	1 Mrad(Si) <u>4</u> /	Units		
Supply		+I _{CC}	L Tara	All Analog input	MIN	-	-	-	-	mA
Current	+100	= 0v, No Load	MAX	3.4	3.2	3.1	3	ША		
Input Offset	Vos		MIN	-2.8	-3.5	-3.8	-4.2	mV		
Voltage	VOS		MAX	2.8	3.5	3.8	4.2	IIIV		
Input Offset	I _{OS}		MIN	-100	-100	-200	-1500	pА		
Current	105		MAX	100	100	200	1500	PΑ		
Input Bias	I _B		MIN	-100	-100	-100	-700	pА		
Current	IB		MAX	100	100	100	700	μA		
Common			MIN	59	54	51	50			
Mode Rejection Ratio	Rejection		MAX	-	-	-	-	dB		
Power Supply			MIN	51	47	46	46			
Rejection Ratio	PSRR		MAX	-	-	-	-	dB		
Output High	V _{OH}	$R_{L} = 3.6K$ to	MIN	Vcc-0.1	Vcc-0.1	Vcc-0.1	Vcc-0.1	V		
Voltage	VOH	GND	MAX	-	-	-	-	v		
Output Low	V _{OL}	$R_{L} = 3.6K$ to	MIN	-	-	-	-	V		
Voltage	VOL	V _{CC}	MAX	0.08	.079	0.078	0.078	v		
Slew Rate	CD	SR $\begin{array}{c} R_{L} = 8K \\ Gain = 1 \end{array}$	MIN	1.9	1.45	0.91	0.75	V/us		
Siew Rate	51		MAX	-	-	-	-			
Open Loop	Aci	A _{OL} No Load	MIN	90	86	84	83	dB		
Gain	TOL		MAX	-	-	-	-	uр		
Unit Gain	UGBW	$R_L = 10K$	MIN	3.3	2.6	1.7	1.4	MHz		
Bandwidth	00077		MAX	-	-	-	-	1.11.15		

Notes:

- 1) RHA step level testing for this specification reflects Total Dose exposure at 100krad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.
- 2) RHA step level testing for this specification reflects Total Dose exposure at 300krad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.
- 3) RHA step level testing for this specification reflects Total Dose exposure at 650krad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.
- 4) RHA step level testing for this specification reflects Total Dose exposure at 1Mrad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.

RELEASED 7/1/19

RHD5900

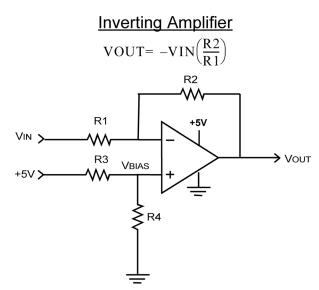
Radiation Electrical Performance Characteristics IIB

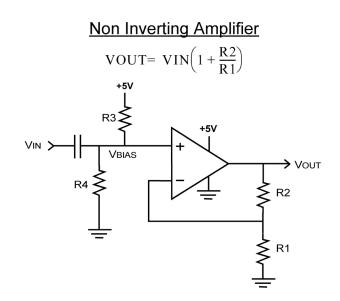
 $(T_{C} = +25^{\circ}C, +V_{CC} = +5.0V \pm 10\%, V_{EE} = GND)$

Parameter	Symbol	Test Conditions	MIN / MAX	100 krad(Si) <u>1</u> /	300 krad(Si) <u>2</u> /	650 krad(Si) <u>3</u> /	1Mrad(Si) 4/	Units
Supply Current	+I _{CC}	All Analog input = 0v, No Load	MIN MAX	- 4.4	- 4.1	- 4	- 3.9	mA
Input Offset Voltage	V _{OS}		MIN MAX	-3 3	-3.8 3.8	-4.5 4.5	-4.8 4.8	mV
Input Offset Current	I _{OS}		MIN	-100 100	-100 100	-200 200	-1500 1500	pА
Input Bias Current	I _B		MIN MAX	-100 100	-100 100	-100 100	-700 700	pА
Common Mode Rejection Ratio	CMRR		MIN MAX	-	-	-	-	dB
Power Supply Rejection Ratio	PSRR		MIN MAX	72	71	70	69 -	dB
Output High Voltage	V _{OH}	R _L = 3.6K to GND	MIN MAX	Vcc-0.1 -	Vcc-0.1 -	Vcc-0.1 -	Vcc-0.1 -	V
Output Low Voltage	V _{OL}	$R_L = 3.6K$ to V_{CC}	MIN MAX	- 0.09	- 0.089	- 0.088	- 0.088	V
Slew Rate	SR	$R_L = 8K$ Gain = 1	MIN MAX	2.4 -	2.2	2.0	1.9 -	V/us
Open Loop Gain	A _{OL}	No Load	MIN MAX	95 -	92 -	90 -	90	dB
Unit Gain Bandwidth	UGBW	R _L = 10K	MIN MAX	4.2 -	3.9	3.4 -	3.2	MHz

Notes:

- 1) RHA step level testing for this specification reflects Total Dose exposure at 100krad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.
- 2) RHA step level testing for this specification reflects Total Dose exposure at 300krad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.
- 3) RHA step level testing for this specification reflects Total Dose exposure at 650krad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.
- 4) RHA step level testing for this specification reflects Total Dose exposure at 1Mrad(Si) per method 1019, condition A of MIL-STD-883 @ +25°C.

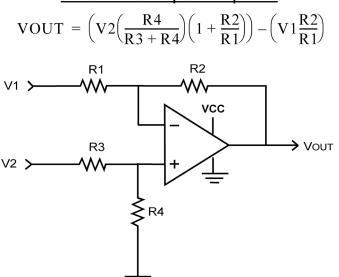

RELEASED 7/1/19



RHD5900

RHD5900 Quad Operational Amplifier Application Notes

Application Note 1: Single Power Supply Amplifier



Note:

For V_{OUT} DC @ mid-range of common mode voltage range, $V_{BIAS} = 2.5/(1+R2/R1)$, $V_{BIAS} = +5*R4/(R3+R4)$

Application Note 2: Differential Input Amplifier

Differential Input Amplifier

RHD5900

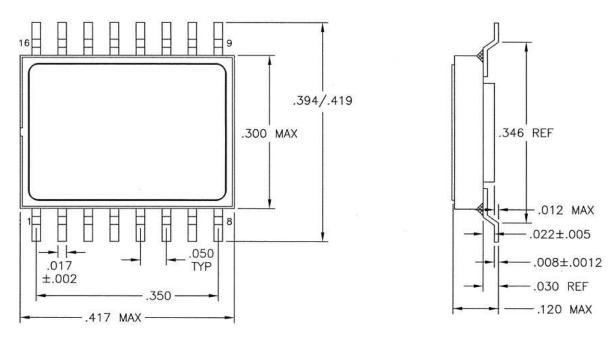


Figure 4: Package Outline

Note:

Package and lid are electrically isolated from signal pads.

Ordering Information

Model	DLA SMD #	Screening	Package	
RHD5900-7	-	Commercial Flow, +25°C. testing only		
RHD5900-S	-	Military Temperature, -55°C to +125°C. Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	16-pin SOIC	
RHD5900- 201-1S	5962-1024101KXC	In accordance with DLA SMD	Package	
RHD5900- 201-2S	5962-1024101KXA			
RHD5900- 901-1S	5962H1024101KXC	In accordance with DLA Certified RHA Program Plan to RHA		
RHD5900- 901-2S	5962H1024101KXA	Level "H", 1 Mrad(Si)		

Revision History

Date	Revision	Change Description
03/28/2016	Н	Import into CAES format
05/14/2019	J	Add tables for $3.3v \pm 10\%$ and $5.0v \pm 10\%$ for Room Hot and Cold limits. Then add radiation limit tables for $3.3v \pm 10\%$ and $5.0v \pm 10\%$ for 100krad, 300krad, 650krad and 1Mrad. Add Diode Protection diagram. Update to the latest format. Add Titus.
06/13/2019	K	Revise the limits in the 3.3v Radiation table for the V_{OL} parameter
07/1/2019	L	Remove the Dual Power Supply comment in the Features. Change Pin-out 13 function to 'Power supply return'. Remove Note <u>1</u> / in tables 1A and 1B. Change note <u>2</u> / to <u>1</u> / in table 1B. Place parentheses around $V_{CC} = 5.0V$ in table 1B for note <u>1</u> / parameter conditions. Add $V_{EE} =$ GND to tables IA, IB, IIA, IIB. Remove Application Note 1. Change Application Note 2 & 3 to Application Note 1 & 2.

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Long Island Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

