Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

Features

- 32-Channels provided by two independent 16-channel multiplexers
- Radiation performance
 - Total dose: 300 krads(Si), Dose rate = 50 300 rads(Si)/s
 - SEU: Immune up to 120 MeV-cm²/mg
 - SEL: Immune by process design
- Full military temperature range
- Low power consumption < 30mW
- Separate address bus and enable for (CH0-CH15) and (CH16-CH31).
- Fast access time 1500ns typical
- All channel inputs protected by ±20V nominal Transorbs.
- Input over voltage protection (power on or off)
- Break-Before-Make switching
- High analog input impedance (power on or off)
- Designed for aerospace and high reliability space applications
- Packaging Hermetic ceramic
 - 56 leads, 0.80"Sq x 0.20"Ht quad flat pack
 - Typical Weight 6 grams
- CAES Radiation Hardness Assurance Plan is DLA Certified to MIL-PRF-38534, Appendix G.

General Description

CAES MUX8523 is a radiation tolerant, dual 16 channel multiplexer MCM (multi-chip module) with electrostatic discharge (ESD) protection on all channel inputs.

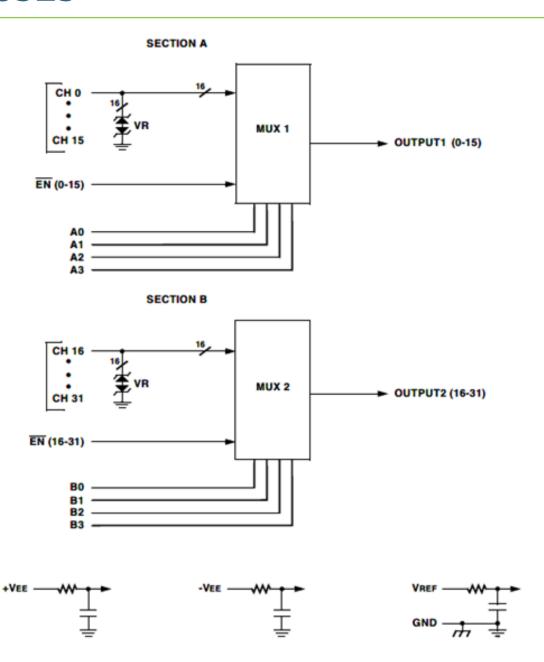
The MUX8523 has been specifically designed to meet exposure to radiation environments. It is available in a 56 lead High Temperature Co-Fired Ceramic (HTCC) Quad Flatpack (CQFP). It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534, the MUX8523 is ideal for demanding military and space applications.

Organization and Application

The MUX8523 consists of two independent 16 channel multiplexers arranged as shown in the Block Diagram.

A Section

Sixteen (16) channels addressable by bus $A_0 \sim A_3$, enabled by $\overline{EN}(0.15)$ and outputted on Output1(0.15).


B Section

Sixteen (16) channels addressable by bus $B_0 \sim B_3$, enabled by $\overline{EN}(16-31)$ and outputted on Output2(16-31).

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

MUX8523 Dual 16-channel Analog MUX Block Diagram

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

Absolute Maximum Ratings 1/

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Supply Voltage +V _{EE} (Pin 18) -V _{EE} (Pin 46) V _{REF} (Pin 39)	+16.5 -16.5 +16.5	V V V
Digital Input Overvoltage V _{EN0-15} (Pin 13), V _{EN16-31} (Pin 44), V _A (Pins 14, 15, 16, 17), V _B (Pins 40, 41, 42, 43)	< V _{REF} +4 > GND -4	V V
Analog Input Over Voltage V_{IN}	±18V	V

Note:

1) All measurements are made with respect to ground.

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

Recommended Operating Conditions 1/

Symbol	Parameter	Typical	Units
+V _{EE}	+15V Power Supply Voltage	+15.0	V
-V _{EE}	-15V Power Supply Voltage	-15.0	V
V _{REF}	Reference Voltage	+5.00	V
V _{AL}	Logic Low Level	+0.8	V
V _{AH}	Logic High Level	+4.0	V

Note:

1) Power Supply turn-on sequence shall be as follows: +VEE, -VEE, followed by VREF.

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

DC Electrical Performance Characteristics 1/

(Tc = -55°C to +125°C, +V_{EE} = +15V, -V_{EE} = -15V, V_{REF} = 5.0V - Unless otherwise specified)

Parameter	Symbol	Conditions	MIN	MAX	Units
	+I _{EE}	$V_{EN}(0-15) = V_{EN}(16-31) = V_A(0-3) =$	0.1	1	mA
Committee Comment	-I _{EE}	$V_B(0-3) = 0$	-1	-0.1	mA
Supply Current	+I _{SBY}	$V_{EN}(0-15) = V_{EN}(16-31) = 4V, V_A(0-3) =$	0.1	1	mA
	-I _{SBY}	$V_B(0-3) = 0 \underline{6}/$	-1	-0.1	mA
	$I_{AL}(0-3)_A$	$V_A = 0V 1/, 7/$	-1	1	μΑ
Address Input Current	I _{AH} (0-3) _A	V _A = 5V <u>1</u> /, <u>7</u> /	-1	1	μA
Address Tilput Current	I _{AL} (0-3) _B	$V_B = 0V 1/, 7/$	-1	1	μA
	I _{АН} (0-3) _В	V _B = 5V <u>1</u> /, <u>7</u> /	-1	1	μA
	I _{ENL} (0-15)	$V_{EN}(0-15) = 0V 7/$	-1	1	μA
Fachla Innut Current	I _{ENH} (0-15)	$V_{EN}(0-15) = 5V \underline{7}/$	-1	1	μΑ
Enable Input Current	I _{ENL} (16-31)	$V_{EN}(16-31) = 0V Z/$	-1	1	μA
	I _{ENH} (16-31)	$V_{EN}(16-31) = 5V \underline{7}/$	-1	1	μA
Positive Input Leakage Current (CH0-CH31)	$+I_{SOFFOUTPUT(ALL)}$	$V_{IN} = +10V$, $V_{EN} = 4V$, output and all unused MUX inputs under test = -10V $\underline{2}/, \underline{3}/, \underline{7}/$	-100	+700	nA
Negative Input Leakage Current (CH0-CH31)	-Isoffoutput(all)	V_{IN} = -10V, V_{EN} = 4V, output and all unused MUX inputs under test = +10V $\underline{2}$ /, $\underline{3}$ /, $\underline{7}$ /	-100	+700	nA
Positive Output Leakage Current OUTPUTS (pins 12,45)	+I _{DOFFOUTPUT(ALL)}	$V_{OUT} = +10V$, $V_{EN} = 4V$, output and all unused MUX inputs under test = -10V $\underline{3}$ /, $\underline{4}$ /, $\underline{7}$ /	-100	+100	nA
Negative Output Leakage Current OUTPUTS (pins 12,45)	-I _{DOFFOUTPUT(ALL)}	V_{OUT} = -10V, V_{EN} = 4V, output and all unused MUX inputs under test = +10V $3/$, $4/$, $7/$	-100	+100	nA

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

DC Electrical Performance Characteristics $\underline{1}$ / (continued)

(Tc = -55°C to +125°C, + V_{EE} = +15 V_{r} , - V_{EE} = -15 V_{r} , V_{REF} = 5.0 V_{r} - Unless otherwise specified)

Parameter	Symbol	Conditions	Conditions		MAX	Units
Input Clamped Voltage (CH0-CH31)	+V _{CLMP}	$V_{EN} = 4V$, all unused MUX inputs	+25°C +125°C -55°C	18.0 18.0 17.5	23.0 23.5 22.5	V V V
Input Clamped Voltage (CH0–CH31)	-V _{CLMP}	under test are open. <u>3</u> /	+25°C +125°C -55°C	-23.0 -23.5 -22.5	-18.0 -18.0 -17.5	V V V
Switch ON Resistance OUTPUTS (pins 12,45)	R _{DS(ON)(0-31)A}	$V_{IN} = +15V$, $V_{EN} = 0.8V$, $I_{OUT} = -1r$ 2/, $3/$, $5/$	mA	500	3000	Ω
	R _{DS(ON)(0-31)B}	$V_{IN} = +5V$, $V_{EN} = 0.8V$, $I_{OUT} = -1m$, $2/$, $3/$, $5/$	4	500	3000	Ω
	R _{DS(ON)(0-31)C}	$V_{IN} = -5V$, $V_{EN} = 0.8V$, $I_{OUT} = +1m$ 2/, $3/$, $5/$	Α	500	3000	Ω

Notes:

- 1/ Measure inputs sequentially. Ground all unused inputs of the device under test. V_A is the applied input voltage to the address lines A(0-3). V_B is the applied input voltage to the address lines B(0-3).
- $2/V_{IN}$ is the applied input voltage to the input channels (CH0-CH31).
- 3/ V_{EN} is the applied input voltage to the enable lines $\overline{EN}(0-15)$ and $\overline{EN}(16-31)$
- 4/ V_{OUT} is the applied input voltage to the output lines OUTPUT1(0-15), OUTPUT2(16-31).
- 5/ Negative current is the current flowing out of each of the MUX pins. Positive current is the current flowing into each MUX pin.
- 6/ If not tested, shall be guaranteed to the specified limits.
- 7/ These parameters for Tc = -55°C are guaranteed by design, characterization, or correlation to other test parameters but not production tested.

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

Switching Characteristics

(Tc = -55°C to +125°C, +V_{EE} = +15V, -V_{EE} = -15V, V_{REF} = 5.0V -- Unless otherwise specified)

Parameter	Symbol	Conditions	MIN	MAX	Units
Switching Test MUX		$R_L = 10K\Omega$, $C_L = 50pF$			
	$t_{A}HL$	Tc = +25°C, +125°C	10	2000	ns
		Tc = -55°C <u>1</u> /	10	5000	ns
		$R_L = 10K\Omega$, $C_L = 50pF$			
	$t_{A}LH$	Tc = +25°C, +125°C	10	2000	ns
		Tc = -55°C	10	5000	ns
	t _{on} EN	$R_L = 1K\Omega$, $C_L = 50pF$	10	1500	ns
	t _{OFF} EN	N 11/32, C[- 30þl	10	1000	ns

^{1/} This parameters for $Tc = -55^{\circ}C$ is guaranteed with $RL = 10k\Omega$, but production tested with No Load.

Truth Table (CH0 - CH15)

A 3	A2	A1	A0	EN(0-15)	"ON" CHANNEL <u>1</u> / (OUTPUT1)
X	Х	Х	Х	Н	NONE
L	L	L	L	L	CH0
L	L	L	Н	L	CH1
L	L	Н	L	L	CH2
L	L	Н	Н	L	CH3
L	Н	L	L	L	CH4
L	Н	L	Н	L	CH5
L	Н	Н	L	L	CH6
L	Н	Н	Н	L	CH7
Н	L	L	L	L	CH8
Н	L	L	Н	L	CH9
Н	L	Н	L	L	CH10
Н	L	Н	Н	L	CH11
Н	Н	L	L	L	CH12
Н	Н	L	Н	L	CH13
Н	Н	Н	L	L	CH14
Н	Н	Н	Н	L	CH15

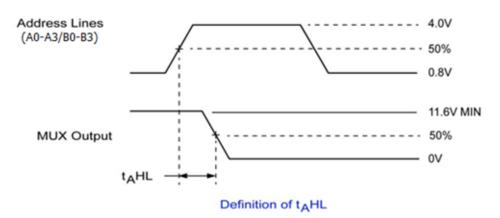
¹⁾ Between (CH0-CH15) and OUTPUT1(0-15)

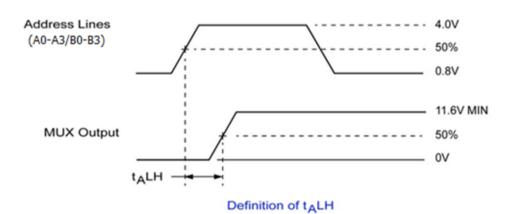
Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

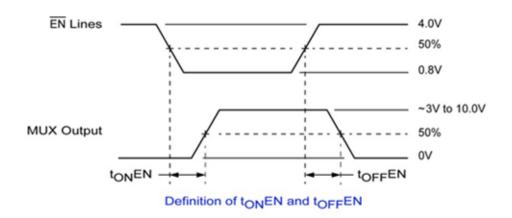
MUX8523

Truth Table (CH16 - CH31)

В3	B2	B1	В0	EN(16-31)	"ON" CHANNEL <u>1</u> / (OUTPUT2)
Х	Х	Х	Х	Н	NONE
L	L	L	L	L	CH16
L	L	L	Н	L	CH17
L	L	Н	L	L	CH18
L	L	Н	Н	L	CH19
L	Н	L	L	L	CH20
L	Н	L	Н	L	CH21
L	Н	Н	L	L	CH22
L	Н	Н	Н	L	CH23
Н	L	L	L	L	CH24
Н	L	L	Н	L	CH25
Н	L	Н	L	L	CH26
Н	L	Н	Н	L	CH27
Н	Н	L	L	L	CH28
Н	Н	L	Н	L	CH29
Н	Н	Н	L	L	CH30
Н	Н	Н	Н	Ĺ	CH31


¹⁾ Between (CH16-CH31) and OUTPUT2(16-31)




Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

MUX8523 Switching Diagrams

Note: f = 10KHz, Duty cycle = 50%.

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

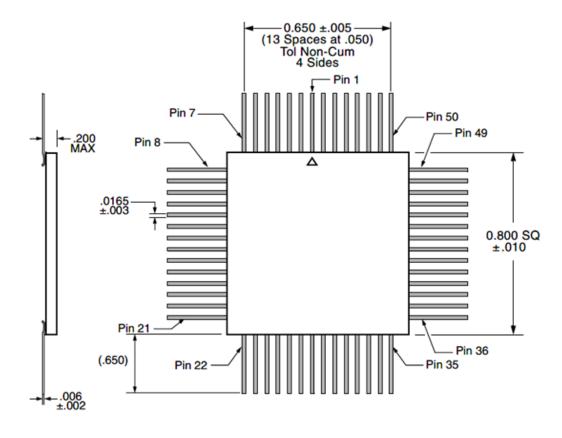
MUX8523

Pin Numbers & Functions

	MUX8523 - 56 Leads Ceramic QUAD Flat Pack					
Pin #	Function	Pin #	Function			
1	CH0	29	CH31			
2	CH1	30	CH30			
3	CH2	31	CH29			
4	CH3	32	CH28			
5	CH4	33	CH27			
6	CH5	34	CH26			
7	GND	35	GND			
8	GND	36	GND			
9	CH6	37	CH25			
10	CH7	38	CH24			
11	CASE GND	39	V_{REF}			
12	Output1(0-15)	40	В3			
13	EN (0-15)	41	B2			
14	Α0	42	B1			
15	A1	43	B0			
16	A2	44	EN(16-31)			
17	A3	45	Output2(16-31)			
18	+V _{EE}	46	-V _{EE}			
19	CH15	47	CH16			
20	CH14	48	CH17			
21	GND	49	GND			
22	GND	50	GND			
23	CH13	51	CH18			
24	CH12	52	CH19			
25	CH11	53	CH20			
26	CH10	54	CH21			
27	CH9	55	CH22			
28	CH8	56	CH23			

Note:

- 1) It is recommended that all "NC" or "no connect pins", be grounded. This eliminates or minimizes and ESD or static buildup.
- 2) Package lid is internally connected to circuit ground (Pins 7,8,11,21,22,35,36,49,50).


Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

Ordering Information

Model Number	DLA SMD #	Screening	Package
MUX8523-7	-	Commercial Flow, +25°C testing only	
MUX8523-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	QUAD Flat Pack
MUX8523-201-1S	5962-0923102KXC	In accordance with DLA SMD.	Fack
MUX8523-901-1S	5962F0923102KXC	In accordance with DLA Certified RHA Program Plan to RHA Level "F", 300krads(Si)	

Package Outline

Note:

1) Outside ceramic tie bars not shown for clarity. Contact factory for details.

Revision History

Date	Rev. #	Change Description	Initials
06/24/11	В	REVISED PER ECN 8523-4	KM
08/11/22	С	REVISED PER ECN 24327	

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant & ESD Protected

MUX8523

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Long Island Inc. d/b/a CAES reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

