Dual 16-Channel Analog Multiplexer Module Radiation Tolerant

MUX8522

Features

- 32-channels provided by four 16-channel multiplexers
- Radiation performance
 - Total dose: 300 krads(Si), Dose rate = 50 300 rads(Si)/s
 - SEU: Immune up to 120 MeV-cm²/mg
 - SEL: Immune by process design
- Full military temperature range
- Low power consumption < 30mW
- Separate address (A₀~A₃ & B₀~B₃) and enable (EN0-15 & EN16-31) for CH0-15 and CH16-31
- Fast access time 1500ns typical
- Break-Before-Make switching
- High analog input impedance (power on or off)
- Designed for aerospace and high reliability space applications
- Packaging Hermetic ceramic
 - 56 leads, 0.80"Sq x 0.20"Ht quad flat pack
 - Typical Weight 6 grams
- CAES Radiation Hardness Assurance Plan is DLA Certified to MIL-PRF-38534, Appendix G.

General Description

CAES MUX8522 is a radiation tolerant, dual 16 channel multiplexer MCM (Multi Chip Module). The MUX8522 has been specifically designed to meet exposure to radiation environments. It is available in a 56 lead High Temperature Co-Fired Ceramic (HTCC) Quad Flatpack (CQFP). It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534, the MUX8522 is ideal for demanding military and space applications.

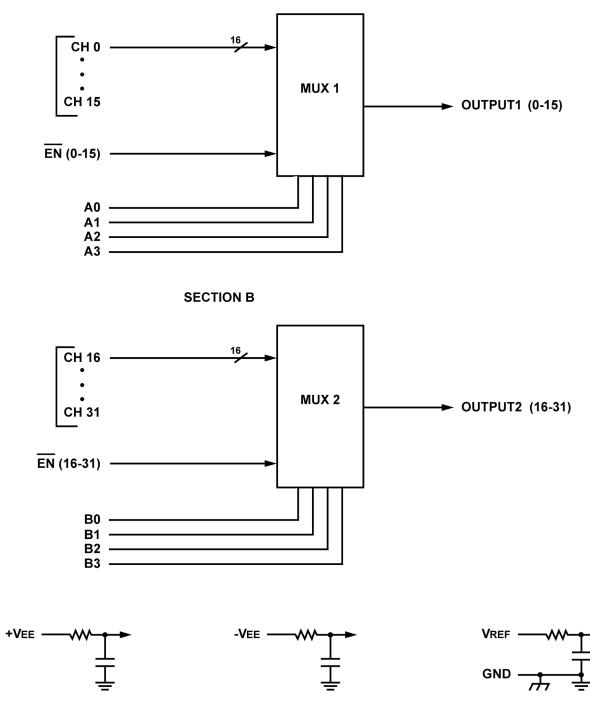
The MUX8522 consists of two independent 16 channel multiplexers arranged as shown in the block diagram.

A Section

Sixteen (16) channels addressable by bus $A_0 \sim A_3$, enabled by EN0-15 and outputted on Output1(0-15).

B Section

Sixteen (16) channels addressable by bus $B_0 \sim B_{3}$, enabled by $\overline{EN16-31}$ and outputted on Output2(16-31).



REV D: 03/04/21

SCD8522 Dual 16-Channel Analog Multiplexer Module Radiation Tolerant

MUX8522: Dual 16-Channel Analog Mux Block Diagram

MUX8522

Absolute Maximum Ratings 1/

Parameter	Range	Units
Case Operating Temperature Range	-55 to +125	°C
Storage Temperature Range	-65 to +150	°C
Supply Voltage + V_{EE} (Pin 18) - V_{EE} (Pin 46) V_{REF} (Pin 39)	+16.5 -16.5 +16.5	V V V
Digital Input Overvoltage V _{EN} 0-15 (Pin 13), V _{EN} 16-31 (Pin 44), V _A (Pins 14, 15, 16, 17), V _B (Pins 40, 41, 42, 43)	< V _{REF} +4 > GND - 4	V V
Analog Input Over Voltage VIN	±35	V

Note:

1) All measurements are made with respect to ground.

Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

Recommended Operating Conditions 1/

Symbol	Parameter	Typical	Units
+V _{EE}	+15V Power Supply Voltage	+15.0	V
-V _{EE}	-15V Power Supply Voltage	-15.0	V
V _{REF}	Reference Voltage	+5.00	V
V _{AL} Logic Low Level		+0.8	V
Vah	Logic High Level	+4.0	V

Note:

1) Power Supply turn-on sequence shall be as follows: +V_{EE}, -V_{EE}, followed by $V_{\text{REF}}.$

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant

MUX8522

DC Electrical Performance Characteristics 1/

 $(T_C = -55^{\circ}C TO + 125^{\circ}C, +V_{EE} = +15V, -V_{EE} = -15V, V_{REF} = +5.0V, unless otherwise specified)$

Parameter	Symbol	Conditions	MIN	MAX	Units
	$+I_{EE}$	$V_{EN}(0-15)=V_{EN}(16-31)=V_A(0-3)=V_B(0-3)=0$	0.1	1	mA
Supply Current	-I _{EE}	$V_{EN}(0-15)=V_{EN}(16-31)=V_A(0-3)=V_B(0-3)=0$	-1	-0.1	mA
Supply Current	$+I_{SBY}$	$V_{EN}(0-15)=V_{EN}(16-31)=4V, V_A(0-3)=V_B(0-3)=0$ 6/		1	mA
	-I _{SBY}	$V_{EN}(0-15)=V_{EN}(16-31)=4V, V_A(0-3)=V_B(0-3)=0$ 6/	-1	-0.1	mA
	IAL(0-3)A	$V_A = 0V$	-1	1	μA
Address Input Current	Іан(0-3)а	$V_A = 5V$	-1	1	μA
Ζ/	IAL(0-3)B	$V_B = 0V$	-1	1	μA
	I _{AH} (0-3) _B	$V_B = 5V$	-1	1	μA
	I _{ENL} (0-15)	$V_{EN}(0-15) = 0V$	-1	1	μA
Frable Issue Conset 7/	I _{ЕNH} (0-15)	$V_{EN}(0-15) = 5V$	-1	1	μA
Enable Input Current <u>7</u> /	I _{ENL} (16-31)	$V_{EN}(16-31) = 0V$	-1	1	μA
	I _{ЕNH} (16-31)	$V_{EN}(16-31) = 5V$	-1	1	μA
Positive Input Leakage Current (CH0-CH31)	-		-100	+100	nA
Negative Input Leakage Current (CH0-CH31)	-Isoffoutput(all)	$V_{IN} = -10V$, $V_{EN} = 4V$, output and all unused MUX inputs under test = $+10V \frac{2}{2}$, $\frac{3}{2}$ /	-100	+100	nA
Positive Output Leakage Current OUTPUTS (pins 12,45)	+Idoffoutput(all)	$V_{OUT} = +10V$, $V_{EN} = 4V$, output and all unused MUX inputs under test = -10V <u>3</u> /, <u>4</u> /, <u>7</u> /	-100	+100	nA
Negative Output Leakage Current OUTPUTS (pins 12,45)	-Idoffoutput(all)	V_{OUT} = -10V, V_{EN} = 4V, output and all unused MUX inputs under test = +10V <u>3</u> /, <u>4</u> /, <u>7</u> /	-100	+100	nA
Cuthels ON Desister	R _{DS} (ON)(0-31) _A	V_{IN} = +15V, V_{EN} = 0.8V, I_{OUT} = -1mA <u>2</u> /, <u>3</u> /, <u>5</u> /	500	3000	Ω
Switch ON Resistance OUTPUTS (pins 12,45)	R _{DS} (ON)(0-31) _B	$V_{IN} = +5V, V_{EN} = 0.8V, I_{OUT} = -1mA 2/, 3/, 5/$	500	3000	Ω
	R _{DS} (ON)(0-31) _C	$V_{IN} = -5V, V_{EN} = 0.8V, I_{OUT} = +1mA 2/, 3/, 5/$	500	3000	Ω

Notes:

- 1) Measure inputs sequentially. Ground all unused inputs of the device under test. V_A is the applied input voltage to the address lines A(0-3). V_B is the applied input voltage to the address lines B(0-3).
- 2) $V_{\mbox{\scriptsize IN}}$ is the applied input voltage to the input channels (CH0-CH31)
- 3) V_{EN} 0-15 is the applied input voltage to the enable lines \overline{EN} (0-15), V_{EN} 16-31 is the applied input voltage to the enable line \overline{EN} (16-31)
- 4) V_{OUT} is the applied input voltage to the output lines OUTPUT1(0-15), OUTPUT2(16-31)
- 5) Negative current is the current flowing out of each of the MUX pins. Positive current is the current flowing into each MUX pin.
- 6) Not tested, guaranteed to the specified limits.
- 7) These parameters for $T_C = -55^{\circ}C$ are guaranteed by design, characterization, or correlation to other test parameters.

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant

MUX8522

Switching Characteristics

(T_C = -55°C to +125°C, +V_{EE} = +15V, -V_{EE} = -15V, V_{REF} = +5.0V -- Unless otherwise specified)

Parameter	Symbol	Conditions	MIN	MAX	Units
	t₄HL	$R_L = 10K\Omega$, $C_L = 50pF$	10	1500	ns
Switching Test MUX	taLH	$R_L = 10K_{\Omega} C_L = 50pF$ $T_c = +25^{\circ}C, +125^{\circ}C$ $T_c = -55^{\circ}C$	10 10	2000 5000	ns ns
	tonEN	$P_{\rm c} = 1K_{\rm O}$ C = 50pE	10	1500	ns
	toffEN	$R_L = 1K\Omega, C_L = 50pF$	10	1000	ns

Truth Table (CH0 – CH15)

A3	A2	A1	AO	EN(0-15)	"ON" CHANNEL <u>1</u> / (OUTPUT 1)
Х	Х	Х	Х	Н	NONE
L	L	L	L	L	CH0
L	L	L	Н	L	CH1
L	L	Н	L	L	CH2
L	L	Н	Н	L	CH3
L	Н	L	L	L	CH4
L	Н	L	Н	L	CH5
L	Н	Н	L	L	CH6
L	Н	Н	Н	L	CH7
Н	L	L	L	L	CH8
Н	L	L	Н	L	CH9
Н	L	Н	L	L	CH10
Н	L	Н	Н	L	CH11
Н	Н	L	L	L	CH12
Н	Н	L	Н	L	CH13
Н	Н	Н	L	L	CH14
Н	Н	Н	Н	L	CH15

1/ Between (CH0-CH15) and OUTPUT1 (0-15)

SCD8522
Dual 16-Channel Analog Multiplexer Module Radiation Tolerant

MUX8522

Truth Table (CH16 – CH31)

B3	B2	B1	BO	EN(16-31)	"ON" CHANNEL <u>1</u> / (OUTPUT 2)
Х	Х	Х	Х	Н	NONE
L	L	L	L	L	CH16
L	L	L	Н	L	CH17
L	L	Н	L	L	CH18
L	L	Н	Н	L	CH19
L	Н	L	L	L	CH20
L	Н	L	Н	L	CH21
L	Н	Н	L	L	CH22
L	Н	Н	Н	L	CH23
Н	L	L	L	L	CH24
Н	L	L	Н	L	CH25
Н	L	Н	L	L	CH26
Н	L	Н	Н	L	CH27
Н	Н	L	L	L	CH28
Н	Н	L	Н	L	CH29
Н	Н	Н	L	L	CH30
Н	Н	Н	Н	L	CH31

1/Between (CH16-CH31) and OUTPUT 2 (16-31)

Dual 16-Channel Analog Multiplexer Module Radiation Tolerant

X8522 **Address Lines** 4.0V (A0 - A3 / B0 - B3)50% 0.8V 11.6V MIN **MUX** Output 50% 0V t_AHL Definition of t_AHL Address Lines 4.0V (A0 - A3 / B0 - B3)50% 0.8V 11.6V MIN **MUX** Output 50% 0V t_ALH Definition of t_ALH **EN** Lines 4.0V 50% 0.8V ~3V to 10.0V **MUX** Output 50% 0V I t_{OFF}EN tonEN -Definition of tonEN and toFFEN MUX8522 Switching Diagrams

Note: f = 10KHz, Duty cycle = 50%.

REV D: 03/04/21

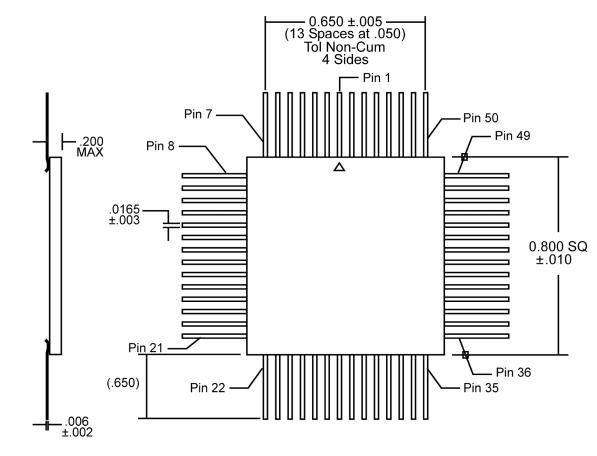
MUX8522

Pin Numbers & Functions

MUX8522 – 56 Leads Ceramic QUAD Flat Pack				
Pin #	Function	Pin #	Function	
1	CH0	29	CH31	
2	CH1	30	CH30	
3	CH2 31 CH29		CH29	
4	CH3	32	CH28	
5	CH4	33	CH27	
6	CH5	34	CH26	
7	GND	35	GND	
8	GND	36	GND	
9	CH6	37	CH25	
10	CH7	38	CH24	
11	CASE GND	39	VREF	
12	OUTPUT1 (0-15)	40	В3	
13	EN (0-15)	41	B2	
14	A0	42	B1	
15	A1	43	ВО	
16	A2	44	EN (16-31)	
17	A3	45	OUTPUT2 (16-31)	
18	+V _{EE}	46	-V _{EE}	
19	CH15	47	CH16	
20	CH14	48	CH17	
21	GND	49	GND	
22	GND	50	GND	
23	CH13	51	CH18	
24	CH12	52	CH19	
25	CH11	53	CH20	
26	CH10	54	CH21	
27	CH9	55	CH22	
28	CH8	56	CH23	

Notes:

- 1) It is recommended that all "NC or "no connect pin" be grounded. This eliminates or minimizes any ESD or static buildup.
- 2) Package lid is internally connected to circuit ground (Pins 7, 8, 11, 21, 22, 35, 36, 49, 50)


Dual 16-Channel Analog Multiplexer Module Radiation Tolerant

MUX8522

Ordering Information

Model	DLA SMD #	Screening	Package
MUX8522- 7	-	Commercial Flow, +25°C testing only	
MUX8522-S	-	Military Temperature, -55°C to +125°C Screened in accordance with the individual Test Methods of MIL-STD-883 for Space Applications	QUAD Flat Pack
MUX8522- 201-1S	5962-0923101KXC	In accordance with DLA SMD	
MUX8522- 901-1S	5962F0923101KXC	In accordance with DLA Certified RHA Program Plan to RHA Level "F", 300krad(Si)	

Package Outline

Note:

1) Outside ceramic tie bars not shown for clarity. Contact factory for details.

REVISION HISTORY

Date	Rev. #	Change Description	Initials
6/24/11	В	REVISED PER ECN 8522-3	KM
9/30/13	С	REVISED PER ECN 8522-5	KM
3/4/21	D	REVISED PER ECN 23534	

MUX8522

Datasheet Definitions

	DEFINITION
Advanced Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited.

Cobham Long Island Inc. d/b/a CAES reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.

