
4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs A
P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

7
/

6
/

2
0

2
1

PRODUCT NAME MANUFACTURER

PART NUMBER

SMD # DEVICE TYPE

Arm Cortex M0+ UT32M0R500 5962-17212 01

Table 1: Cross Reference of Applicable Products

1 OVERVIEW

This Application Note describes how to program the UT32M0R500’s General Purpose Input/Output (GPIO) pins to

function as Pulse Width Modulator (PWM) signals. A PWM is a digital signal with controllable frequency, duty cycle,

and dead band time, and is commonly used to control motors, illuminate LEDs, and more. GPIO pins, when used in

combination with an interrupt timer, can replicate this behavior.

2 CREATING A BASIC PWM SIGNAL

To create a basic PWM, users should select one of the UT32M0R500’s timer peripherals. Such peripherals include the
Dual Timers (DTIMER), Real Timer Counter (RTC), System Tick (SysTick), and even the Pulse Width Modulator (PWM).
By setting a static period value for the timer, and then XOR-ing the GPIO pin every interrupt, a PWM signal with a
50% duty-cycle is output, as shown in Figure 1.

Figure 1: A 1kHz PWM signal with a 50% Duty Cycle

Code 1 shows the DTIMER setup and interrupt function used to generate a 1kHz PWM wave. Users should note that
one period requires two interrupts. One interrupt toggles the GPIO pin high, and the next interrupt toggles the GPIO
pin low.

https://www.caes.com

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs A
P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

7
/

6
/

2
0

2
1

void DTIMER_Setup(void){

DTIMER_StructInit(&DTIMER_InitStruct);

DTIMER_InitStruct.TIMER0.MODE = PERIODIC;

DTIMER_InitStruct.TIMER0.SIZE = TIMER_32BIT;

DTIMER_InitStruct.TIMER0.LOAD_VAL = 50000;//50MHz / 1kHz = 50k counts; 50k counts * 20ns = 1ms

DTIMER_InitStruct.TIMER0.INTRPT_ENABLE = INT_ENABLE;

DTIMER_InitStruct.TIMER0.ENABLE = TIMER_ENABLE;

DTIMER_Init(DTIMER0, &DTIMER_InitStruct);

DTIMER_Cmd(DTIMER0,TIMER0,TIMER_ENABLE);

NVIC_SetPriority(DUALTIMER0_IRQn, 1);//low priority to ensure accurate PWM waveform

NVIC_EnableIRQ(DUALTIMER0_IRQn);

}

void DUALTIMER0_IRQHandler(void){

DTIMER_ClearIRQ(DTIMER0, TIMER0);//clear peripheral interrupt

GPIO0->DATA ^= GPIOasPWM_pin;//Use XNOR to flip bit(s) covered by the GPIOasPWM_pin variable

//fewer logic steps vs if/then to determine the pin state

NVIC_ClearPendingIRQ(DUALTIMER0_IRQn);//clear NVIC interrupt

}

Code 1: DTIMER Setup and Interrupt functions for a 1kHz PWM wave

2.1 ADDING A DUTY CYCLE

Users can change the period of the running PWM signal by updating the DTIMER’s Load register (TIMER0BGLOAD).
To add duty-cycle functionality to the PWM signal, users need to be able to program alternating interrupt times that
add up to the total desired period. Code 2 shows how to use global variables to set the desired period, duty cycle,
and compare values. Additionally, Code 2 shows how to update the DTIMER period in the ISR. Figure 2 shows the
resulting output.

uint32_t GPIOasPWM_Period;

uint32_t GPIOasPWM_Compare;

uint32_t GPIOasPWM_DutyCycle;

GPIOasPWM_Period = 50000;//DTIMER period = d50000 for 1kHz

GPIOasPWM_DutyCycle = 33;

GPIOasPWM_Compare_Hi = GPIOasPWM_Period * GPIOasPWM_DutyCycle / 100;

GPIOasPWM_Compare_Lo = GPIOasPWM_Period – GPIOasPWM_Compare_Hi;

//Load either Compare value into the DTIMER, then alternate between the two

void DUALTIMER0_IRQHandler(void){

DTIMER_ClearIRQ(DTIMER0, TIMER0);//clear peripheral interrupt

GPIO0->DATA ^= GPIOasPWM_pin;//Use XNOR to flip bit(s) covered by the GPIOasPWM_pin variable

//fewer logic steps vs if/then to determine the pin state

//Duty Cycle

if(DTIMER0->Timer0Load == GPIOasPWM_Compare_Hi){

DTIMER0->Timer0Load = GPIOasPWM_Compare_Lo;

}else{

DTIMER0->Timer0Load = GPIOasPWM_Compare_Hi;

}

NVIC_ClearPendingIRQ(DUALTIMER0_IRQn);//clear NVIC interrupt

}

Code 2: The DTIMER Interrupt with Duty Cycle functionality

https://www.caes.com

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs

7
/

6
/

2
0

2
1

A

P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

Figure 2: A 1kHz PWM wave with a 33% Duty Cycle

2.2 ADDING A DEAD BAND TIME

When using multiple GPIO pins to control a motor, users may need to ensure that only one signal is ever asserted at
a time. Dead Band time is a delay between a signal de-asserting and the next one asserting, as shown in Figure 3.

tdb

GPIOasPWM_0

GPIOasPWM_1

GPIOasPWM_2

Figure 3: Dead Band time (tdb) between alternating PWM signals

When manually using GPIO pins as PWMs, Dead Band is first ensured by de-asserting all of the relevant GPIO pins,
and then asserting the next GPIO pin in the sequence. Users can increase the Dead Band time by inserting a delay
between the two operations. Dead Band time increases the amount of time required to service the GPIO-as-PWM
interrupt, and large dead-band times will impact the processing time available to other code, such that users should
carefully consider how much Dead Band time they use. Figure 4 shows the minimum dead-band time (Δt = 618ns) to
clear GPIO pins and then write to the next in the sequence (in Code 3).

https://www.caes.com

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs A
P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

7
/

6
/

2
0

2
1

uint8_t GPIOasPWM_DB_PinMask = 0x7; //GPIO pins [2:0]

uint8_t GPIOasPWM_DB_State; //keeps track of the output state

uint8_t GPIOasPWM_DB_Values[3] = {

0x1, //b001

0x2, //b010

0x4 //b100

};

void DUALTIMER0_IRQHandler(void){

DTIMER_ClearIRQ(DTIMER0, TIMER0);//clear peripheral interrupt

GPIO0->DATA &= ~GPIOasPWM_DB_PinMask;//turn all GPIOasPWM off

//change the GPIO pins to enter the next state

GPIO0->DATA = (GPIO0->DATA & ~GPIOasPWM_DB_PinMask) |

(GPIOasPWM_DB_Values[GPIOasPWM_DB_State] & GPIOasPWM_DB_PinMask);

GPIOasPWM_DB_State++;

if(GPIOasPWM_DB_State >= 3){//3 total Values in the _DB_Values array, circle back around

GPIOasPWM_DB_State = 0;

}

NVIC_ClearPendingIRQ(DUALTIMER0_IRQn);//clear NVIC interrupt

}

Code 3: The DTIMER Interrupt with Minimum Dead Band Time

Figure 4: Minimum Dead-Band Delay between two GPIO pins

https://www.caes.com

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs

7
/

6
/

2
0

2
1

A

P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

Code 4 adds additional delay using No-Op instructions. The resulting output is in Figure 5, with the Dead Band time
measured as Δt = 10.68µs.

uint8_t GPIOasPWM_DB_PinMask = 0x7;

uint8_t GPIOasPWM_DB_State;

uint8_t GPIOasPWM_DB_Values[3] = {0x1, 0x2, 0x4};//b001, b010, b100 respectively

void DUALTIMER0_IRQHandler(void){

uint8_t i;

DTIMER_ClearIRQ(DTIMER0, TIMER0);//clear peripheral interrupt

GPIO0->DATA &= ~GPIOasPWM_DB_PinMask;//turn all GPIOasPWM off

for(i=0;i<100;i++){//Using __NOPs to increase the Dead Band Time

__nop();

}

//change the GPIO pins to enter the next state

GPIO0->DATA = (GPIO0->DATA & ~GPIOasPWM_DB_PinMask) |

(GPIOasPWM_DB_Values[GPIOasPWM_DB_State] & GPIOasPWM_DB_PinMask);

GPIOasPWM_DB_State++;

if(GPIOasPWM_DB_State >= 3){//3 total Values in the _DB_Values array, circle back around

GPIOasPWM_DB_State = 0;

}

NVIC_ClearPendingIRQ(DUALTIMER0_IRQn);//clear NVIC interrupt

}

Code 4: The DTIMER Interrupt with a 100-NOP Dead Band

Figure 5: Dead Band Delay with 100 NOP instructions between two GPIO pin writes

For the minimum dead-band time between an external trigger (PWM or GPIO input) and the GPIOasPWM pin,
consult the measurements in section 3.

https://www.caes.com

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs A
P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

7
/

6
/

2
0

2
1

3 INTERRUPT SERVICE ROUTINE TIMING

Software that relies heavily on periodic interrupts limits the time available to execute other code. This section looks
at the amount of time the GPIOasPWM example spends processing an Interrupt Service Routine (ISR).

To understand the time spent servicing an ISR, four different signals were measured:
 GPIOasPWM is the GPIO pin acting as a PWM output

 Start/End ISR is a GPIO pin set to toggle at the very start and very end of the ISR
o Note: These lines of code provide visual reference for time spent in the ISR, but increase the

duration of the interrupt, and do not need to be included in user code. See Table 3 for interrupt
timing without these lines of code

 Main Toggle is a GPIO pin programmed to toggle as long as the processor is running code in the main
while loop

 EXT Trigger is an external signal routed to a GPIO input with falling edge interrupt detection, providing
the delay between a trigger signal and the GPIOasPWM output changing

o Note: External signals used to trigger a GPIO interrupt can be triggered by either edges or levels
(See GPIO INTTYPEx and INTPOLx registers). For this example, use edge detection. By flipping
the INTPOLx bit in the ISR, users can trigger a signal on both edges instead of just one.

Figure 6: Delays Within various Interrupt Service Routines

Five different peripherals were used to record the data in Table 2. Each ISR had the same bare-bones set of
instructions: Toggle the Start/End ISR bit, clear the peripheral interrupt flag, toggle the GPIOasPWM bit, clear the
NVIC flag, toggle the Start/End ISR again, and exit. DTIMER0, RTC, PWM, and SysTick are all timer interrupts, while
the GPIO Input uses an external signal (such as an external clock or the output of the UT32M0R00’s PWM) to trigger
the ISR. Comparing the five different peripherals, the context switching and time spent within an ISR is similar. The
SysTick interrupt, as it does not require a peripheral flag clear, takes less time to write to the GPIOasPWM bit and
spends less time in the ISR.

Interrupt Source A (µs) B (µs) C (µs) D (µs) E (µs)

DTIMER0 0.696 1.296 0.816 2.496 -

RTC 0.752 1.352 0.880 2.576 -

GPIO Input 0.696 1.172 0.800 2.400 0.696

PWM 0.696 1.296 0.656 2.496 0.640

SysTick 0.340 0.820 0.720 2.040 -

Average 0.636 1.187 0.774 2.402 0.669

Table 2: Peripheral vs ISR Duration

Users should ensure they set the priority of the NVIC interrupt as low (aka urgent) as possible, to avoid other interrupt

https://www.caes.com

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs

7
/

6
/

2
0

2
1

A

P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

signals from context switching away from the GPIOasPWM interrupt. This would delay the GPIOasPWM signal from
changing at the correct time. Of the peripherals listed in Table 2, all five are usable sources, but the SysTick has the
fastest response times.

3.1 IMPACT OF DUTY CYCLE AND DEAD BAND TIME

Table 3 uses the DTIMER0 interrupt to examine the time spent in the ISR (B) as duty cycle and dead band time
operations are added to the ISR. Additionally, the time taken to context switch to the ISR, process it, and switch back
to the main() program is captured by the D and D (no B toggle) measurements. By knowing the time taken by B and
D with the B toggle code included, we can use the D (no B toggle) measurements to calculate the duration spent
inside an ISR (without the “Start/End Toggle” code).

𝑇𝑖𝑚𝑒 𝑖𝑛 𝑡ℎ𝑒 𝐼𝑆𝑅 (𝑛𝑜 𝐵 𝑡𝑜𝑔𝑔𝑙𝑒) = 𝐷 (𝑛𝑜 𝐵 𝑡𝑜𝑔𝑔𝑙𝑒) − [𝐷 − 𝐵]

ISR Features B

(µs)

D

(µs)

D (no B toggle)

(µs)

Time in the ISR (no B toggle)

(µs)

GPIO Toggle Only 1.296 2.496 1.936 0.736

With Duty Cycle 1.840 3.056 2.600 1.384

With a 100 NOP Dead Band 12.28 13.48 12.88 11.68

Table 3: ISR Time vs Added Functionalities

3.2 PROCESSING TIME VERSUS FREQUENCY

As the GPIOasPWM frequency increases, the amount of time available for all other code to run per period decreases.
Using the timing measurements from Section 3.1, we can look at the frequency versus the amount of time the
processor can dedicate to non-GPIOasPWM code. Note the time spent servicing the ISR per period in table 4 is equal
to two times the “D (no B toggle)” from the “With Duty Cycle” row from Section 3.1, to account for context switching
and two interrupts per period.

Frequency

(Hz)

Period

(µs)

Time spent servicing the
ISR per period

(µs)

Time spent in other code

(µs)

Percentage of time per
period servicing the ISR

(%)

1,000 1000 5.200 994.8 0.52

5,000 200 5.200 194.8 2.6

10,000 100 5.200 94.8 5.2

20,000 50 5.200 44.8 10.4

40,000 25 5.200 19.8 20.8

80,000 12.5 5.200 7.3 41.6

100,000 10 5.200 4.8 52

200,000 5 5.200 n/a n/a

Table 4: Frequency vs ISR Processing Time

When designing software with multiple timing reliant operations, users can use the above table to make informed
decisions about the maximum GPIOasPWM frequency their system can accommodate.

4 CONCLUSION

Using a GPIO pin as a PWM output requires a programmable periodic interrupt signal, and the UT32M0R500 has
plenty to choose from. Doing so is an easy way to bolster the amount of PWM outputs possible, but requires processing
overhead that the actual PWM peripheral does not. Using this appnote, designers can determine if using GPIO pins
as PWM signals makes sense for their systems.

https://www.caes.com

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | caes.com

UT32M0R500 GPIO as PWMs A
P
P
L
IC

A
T
IO

N
 N

O
T
E

V
e

r 1
.0

.0

7
/

6
/

2
0

2
1

REVISION HISTORY

Date Revision Author Change Description

07/06/2021 1.0.0 OW Initial Release

The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities,
technology, or software are exported from the U.S.: These commodities, technology, or software were exported
from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is
prohibited.

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any
products and services described herein at any time without notice. Consult an authorized sales representative to verify that the

information in this data sheet is current before using this product. The company does not assume any responsibility or liabil ity
arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does
the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of the company or of third parties.

https://www.caes.com

