
4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

PRODUCT NAME MANUFACTURER
PART NUMBER

SMD # DEVICE
TYPE

INTERNAL PIC
NUMBER

Arm Cortex M0+ UT32M0R500 5962-17212 CAN Unit QS30
Table 1: Cross Reference of Applicable Products

1.0 Overview

Unlike Ethernet and I2C, CAN messages are “address-less”, meaning that the messages do not contain destination
address information. Any device attached to the CAN bus is capable of receiving any message placed on the bus. To
prevent a device from being overwhelmed by unwanted messages, CAN peripherals can be programmed to perform
message filtering. CAN filtering allows for the acceptance of specific messages based on the message ID, or to accept
a range of messages based on a filter mask. CAN filters and masks direct the CAN peripheral to examine incoming
messages and accept/reject them based on their contents. This document details the UT32M0R500 CAN filtering and
how Cobham-supplied APIs map programmer-friendly filter/mask values into CAN.

2.0 UT32M0R500 CAN Peripheral

The CAN peripheral within Wolverine is based on the Philips SJA1000 CAN device, with a nearly identical register set.
The CAN peripheral can operate in two modes: BasiCAN and PeliCAN. BasiCAN – as its name implies – is a very basic
CAN peripheral that supports only standard (11-bit) ID frames and a single filter/mask pair. PeliCAN – which occupies
the same register space as BasiCAN – supports both standard and extended (29-bit) ID frames, as well as enhanced
filtering logic. The following table describes the differences in capabilities between modes. [It is assumed that the
reader is familiar with CAN frame structures and field definitions, including the ID bits, RTR bit, and data (payload) bytes…]

Mode Filter Frame Filter #1
ID bits
tested

Filter #1
RTR bit
tested

Data[0]
byte
tested

Data[1]
byte
tested

Filter #2
ID bits
tested

Filter #2
RTR bit
tested

BasiCAN Single Standard 10…3 n/a n/a n/a n/a n/a
PeliCAN Single Standard 10…3 TESTED TESTED TESTED n/a n/a
PeliCAN Single Extended 28…0 TESTED Ignored Ignored n/a n/a
PeliCAN Double Standard 10…3 TESTED TESTED1 Ignored 10…3 TESTED
PeliCAN Double Extended 28…0 Ignored Ignored Ignored 28…0 Ignored

Note:

 1: Part of Filter #1

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

3.0 BasiCAN Filtering

In its most simple form – using BasiCAN – the filtering is best described as such:

Example #1

Assume that our application is interested in receiving only those CAN messages that have the (binary)
ID of 101011011002 (or in hexadecimal, 0x56C). As indicated in the table above, the BasiCAN filter can
be programmed for ID bits 10..3 only, which means we cannot filter on bits 2..0, indicated by ‘XXX’
below. With this criterion, the BasiCAN filter register is programmed as such:

BASICAN->ACCEPT_CODE = 10101101100b >> 3; // 101011012 after shift

Because only ID bits 10..3 are used for filtering, any message ID of 10101101XXX2 will pass through the
CAN’s filter. This means that our application will receive messages with IDs of 101011010002 through
101011011112. In this case, the application will need to perform a “second level” (software) filtering of
all incoming messages to discard any message without an ID of 101011011002.

Example #2

To expand upon Example #1, let’s assume our application now wants to receive any CAN messages
where the upper six bits are 1010112 or 101011yyXXX2. Due to the filter already ignoring ID bits 2..0,
we need only focus on ID bits 4..3, indicated by ‘yy’ above. To get the CAN to ignore these two bits, we
have the application program the mask register with 000000110002, which will appear in software as:

BASICAN->ACCEPT_MASK = 00000011000b >> 3; // 000000112 after shift

This will instruct the CAN peripheral to accept any messages with IDs from 101011000002 to
101011111112. In short, for every bit in the mask register that is programmed as a ‘1’, the corresponding
bit in the acceptance filter register is ignored. [This implies that if the mask register is programmed with
all 1s (0xFF), all CAN messages will pass through the filter!]

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

8/14/2019

APPLICATION NOTE

4.0 PeliCAN Filtering

As alluded to in the table above, the PeliCAN filter set is substantially more flexible – and correspondingly more
complicated – than what is provided with BasiCAN. There are four filter options available in PeliCAN mode:

• Single-Filter, Standard-Frame
• Single-Filter, Extended-Frame
• Dual-Filter, Standard-Frame
• Dual-Filter, Extended-Frame

These four filter options allow for a wider – and in some cases, narrower – array of “acceptable” messages from the
CAN bus. We will address these options separately in a moment.

For PeliCAN, there are four acceptance filter registers and four mask registers. As with BasiCAN, for every bit in the
(4-byte) acceptance filter register array, there is a corresponding bit in the (4-byte) mask array. Again, any bit in
the mask that is set to ‘1’ instructs the CAN peripheral to ignore the corresponding bit in the acceptance
filter.

Single-Filter, Standard-Frame

This option is closest to the filter mechanism offered by BasiCAN but supports additional filter tests. The differences
are:

• All 11 bits of the standard message ID can be tested
• The RTR bit can be tested
• The values of Data[1..0] (payload) can be tested

For the “Single-Filter, Standard-Frame” option, the four acceptance filter registers assume the following format:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 ID_10 ID_9 ID_8 ID_7 ID_6 ID_5 ID_4 ID_3
1 ID_2 ID_1 ID_0 RTR n/a n/a n/a n/a
2 Data[0].7 Data[0].6 Data[0].5 Data[0].4 Data[0].3 Data[0].2 Data[0].1 Data[0].0
3 Data[1].7 Data[1].6 Data[1].5 Data[1].4 Data[1].3 Data[1].2 Data[1].1 Data[1].0

And the four mask registers:

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 ID_10 ID_9 ID_8 ID_7 ID_6 ID_5 ID_4 ID_3
1 ID_2 ID_1 ID_0 RTR n/a n/a n/a n/a
2 Data[0].7 Data[0].6 Data[0].5 Data[0].4 Data[0].3 Data[0].2 Data[0].1 Data[0].0
3 Data[1].7 Data[1].6 Data[1].5 Data[1].4 Data[1].3 Data[1].2 Data[1].1 Data[1].0

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

Example #3

If we want our application to process only those CAN messages whose IDs are 101010101012, we simply
assign the ID filter to 101010101012 and the ID mask to 000000000002.

If we wish to filter even further – say, only those messages with an ID of 101010101012 and values of
0x14 or 0x15 in the first data (payload) byte – then the ID filter is set the same but we add a value (to
be described below) to the Data[0] portion of the filter.

To complete Example #3, the register arrays would be programmed as follows:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 1 0 1 0 1 0 1 0

1 1 0 1 0 0 0 0 0

2 0 0 0 1 0 1 0 0

3 0 0 0 0 0 0 0 0

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0 1

3 1 1 1 1 1 1 1 1

We can see from the mask register array that the RTR bit, bit 0 of Data[0], and all bits in Data[1] are to
be ignored. By ignoring bit 0 of Data[0], message with 0x14 or 0x15 data values will make it through
the filter. By setting the Data[1] mask to all 1s (0xFF), the Data[1] byte of the payload is ignored entirely.

Single-Filter, Extended-Frame

This option expands upon the “single-filter, standard-frame” mode. The differences are:

• All 29 bits of the extended-frame message ID can be tested
• The values of Data[1..0] (payload) are not tested

For the “Single-Filter, Extended-Frame” option, the four acceptance filter registers assume the following
format:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 ID_28 ID_27 ID_26 ID_25 ID_24 ID_23 ID_22 ID_21

1 ID_20 ID_19 ID_18 ID_17 ID_16 ID_15 ID_14 ID_13

2 ID_12 ID_11 ID_10 ID_9 ID_8 ID_7 ID_6 ID_5

3 ID_4 ID_3 ID_2 ID_1 ID_0 RTR n/a n/a

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

8/14/2019

APPLICATION NOTE

And the four mask registers:

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 ID_28 ID_27 ID_26 ID_25 ID_24 ID_23 ID_22 ID_21

1 ID_20 ID_19 ID_18 ID_17 ID_16 ID_15 ID_14 ID_13

2 ID_12 ID_11 ID_10 ID_9 ID_8 ID_7 ID_6 ID_5

3 ID_4 ID_3 ID_2 ID_1 ID_0 RTR n/a n/a

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

Example #4

If we want our application to process only those extended-frame CAN messages whose IDs are
110011100001101011010000011112 (0x19C35A0F), we simply assign the ID filter to
110011100001101011010000011112 and the ID mask to 000000000000000000000000000002.

If we wish to ‘open’ the filter a bit – say, allow all messages with an ID of
1100111000011yyyyyyyy000011112 (0x19C3YY0F), where the “don’t care” bits are indicated by the ‘y’
placeholders – then the ID filter is set to the same value as above but we program the value
000000000000011111111000000002 (0x0000FF00) into the ID mask, where there is a ‘1’ for every ‘y’
placeholder in the filter ID.
To complete Example #4, the register arrays would be programmed as follows:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 1 1 0 0 1 1 1 0

1 0 0 0 1 1 0 0 0

2 0 0 0 0 0 0 0 0

3 0 1 1 1 1 0 0 0

We can see from the mask register array that ID bits 15..8 and the RTR bit are to be ignored.

Dual-Filter, Standard-Frame

This option also expands upon the “single-filter, standard-frame” mode. The differences are:

• Two 11-bit, standard-frame message IDs can be tested
• The value of Data[0] (payload) can be tested as part of filter #1

For the “Dual-Filter, Standard-Frame” option, the four acceptance filter registers assume the following format:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 ID1_10 ID1_9 ID1_8 ID1_7 ID1_6 ID1_5 ID1_4 ID1_3
1 ID1_2 ID1_1 ID1_0 RTR1 Data[0].7 Data[0].6 Data[0].5 Data[0].4
2 ID2_10 ID2_9 ID2_8 ID2_7 ID2_6 ID2_5 ID2_4 ID2_3
3 ID2_2 ID2_1 ID2_0 RTR2 Data[0].3 Data[0].2 Data[0].1 Data[0].0

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1

2 1 1 1 1 1 0 0 0

3 0 0 0 0 0 1 0 0

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

8/14/2019

APPLICATION NOTE

In this case, ID1_xx, RTR1, and Data[0] apply to filter #1, while ID2_yy and RTR2 apply to filter #2.

And the four mask registers:

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 ID1_10 ID1_9 ID1_8 ID1_7 ID1_6 ID1_5 ID1_4 ID1_3
1 ID1_2 ID1_1 ID1_0 RTR1 Data[0].7 Data[0].6 Data[0].5 Data[0].4
2 ID2_10 ID2_9 ID2_8 ID2_7 ID2_6 ID2_5 ID2_4 ID2_3
3 ID2_2 ID2_1 ID2_0 RTR2 Data[0].3 Data[0].2 Data[0].1 Data[0].0

Example #5

By having two filters available for our application we can allow two different message types to pass thru
the CAN. Let’s assume that we’re interested in messages that have IDs of 0010xxxxxxx2 – but only if
Data[0] is equal to 1111zzzz2 – and messages that have IDs of 0011yyyyyyy2. All messages with the RTR
bit set are to be ignored.

To complete Example #5, the register arrays would be programmed as follows:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 1 0 0 0 0 0

1 0 0 0 0 1 1 1 1

2 0 0 1 1 0 0 0 0

3 0 0 0 0 0 0 0 0

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0

2 0 0 0 0 1 1 1 1

3 1 1 1 0 1 1 1 1

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

Dual-Filter, Extended-Frame
This option also expands upon the “dual-filter, standard-frame” mode. The differences are:

• Two 16-bit, extended-frame message IDs can be tested
• No testing of RTR bits or payload

 For the “Dual-Filter, Extended-Frame” option, the four acceptance filter registers assume the following
format:

In this case, ID1_xx bits apply to filter #1, while ID2_yy bits apply to filter #2. Note that only the upper
16 bits – bits 28..13 – of each ID are tested; ID bits 12..0 are ignored.

And the four mask registers:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 ID1_28 ID1_27 ID1_26 ID1_25 ID1_24 ID1_23 ID1_22 ID1_21

1 ID1_20 ID1_19 ID1_18 ID1_17 ID1_16 ID1_15 ID1_14 ID1_13

2 ID2_28 ID2_27 ID2_26 ID2_25 ID2_24 ID2_23 ID2_22 ID2_21

3 ID2_20 ID2_19 ID2_18 ID2_17 ID2_16 ID2_15 ID2_14 ID2_13

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 ID1_28 ID1_27 ID1_26 ID1_25 ID1_24 ID1_23 ID1_22 ID1_21

1 ID1_20 ID1_19 ID1_18 ID1_17 ID1_16 ID1_15 ID1_14 ID1_13

2 ID2_28 ID2_27 ID2_26 ID2_25 ID2_24 ID2_23 ID2_22 ID2_21

3 ID2_20 ID2_19 ID2_18 ID2_17 ID2_16 ID2_15 ID2_14 ID2_13

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

8/14/2019

APPLICATION NOTE

Example #6

By having two filters available for our application we can allow two different message types to pass thru
the CAN. For example, one bank of IDs could be used to identify routine messages specific only to our
application, while a second bank of IDs identify high-priority messages for the entire bus.
Let’s assume that our routine messages have (extended) IDs of 001100001x..x2 (0x061XXXXX) and bus-
common high-priority messages have IDs of 110000000y..y2 (0x180YYYYY).

To complete Example #6, the register arrays would be programmed as follows:

Accept[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 1 1 0 0 0 0

1 1 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

Note that only the upper 16 bits of each ID are tested.

Mask[] bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1

2 0 0 0 0 0 0 0 0

3 0 1 1 1 1 1 1 1

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

5.0 API mapping to Registers

The Wolverine’s CAN API specifies a data structure for initializing the CAN filters, irrespective of mode. The structure
is defined in ut32m0_can.h and called CAN_FilterInitTypeDef [the comments and conditional compilation
options have been modified/removed for brevity]:

typedef struct
{
CAN_FILTER_MODE CAN_FilterMode; /*!< filter mode (single or double) */
CAN_FRAME_FORMAT CAN_FrameFormat; /*!< frame format (standard or extended) */
uint32_t CAN_FilterID_Value1; /*!< Specifies the ID value for receive filter #1

Bits 10..0 in std mode, 28..0 in ext mode */
uint8_t CAN_FilterRTR1; /*!< RTR value for receive filter #1 (0 or 1) */
uint8_t CAN_FilterData[2]; /*!< Data[] values for receive filter #1 */
uint32_t CAN_FilterID_Value1_Mask; /*!< which ID value bits are ignored, by 1's.

Bits 10..0 in std mode,8..0 in ext mode */
uint8_t CAN_FilterRTR1_Mask; /*!< RTR bit is ignored, indicated by a 0x01 */
uint8_t CAN_FilterDataMask[2]; /*!< which Data[] values are ignored, by 1's */
uint32_t CAN_FilterID_Value2; /*!< Specifies the ID value for receive filter #2

 Bits 10..0 in std mode, 28..0 in ext mode */
uint8_t CAN_FilterRTR2; /*!< RTR value for receive filter #2 (0 or 1) */
uint32_t CAN_FilterID_Value2_Mask; /*!< which ID value bits are ignored, by 1's.

 Bits 10..0 in std mode, 28..0 in ext mode */
uint8_t CAN_FilterRTR2_Mask; /*!< RTR bit is ignored, indicated by a 0x01. */
} CAN_FilterInitTypeDef;

The following table indicates which fields are used for each available CAN mode:

Field BasiCAN PeliCAN:
single/std

PeliCAN:
single/ext

PeliCAN:
dual/std

PeliCAN:
dual/ext

CAN_FilterMode No Yes Yes Yes Yes
CAN_FrameFormat No Yes Yes Yes Yes
CAN_FilterID_Value1 Yes 1 Yes 2 Yes 3 Yes 2 Yes 5
CAN_FilterRTR1 No Yes Yes Yes No
CAN_FilterData[2] No Yes No Yes 4 No
CAN_FilterID_Value1_Mask Yes 1 Yes 2 Yes 3 Yes 2 Yes 5
CAN_FilterRTR1_Mask No Yes Yes Yes No
CAN_FilterDataMask[2] No Yes No Yes 4 No
CAN_FilterID_Value2 No No No Yes 2 Yes 5
CAN_FilterRTR2 No No No Yes No
CAN_FilterID_Value2_Mask No No No Yes 2 Yes 5
CAN_FilterRTR2_Mask No No No Yes No

1 Bits 10..3, bits 2..0 are shifted-off by the API
2 Bits 10..0
3 Bits 28..0
4 Bits 7..0 of Data[0] only, applies to Filter #1 only
5 Bits 28..13, bits 12..0 are shifted-off by the API

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

8/14/2019

APPLICATION NOTE

It’s important to note that the API expects ID values assigned in the CAN_FilterInitTypeDef structure to be completely
assigned. This means that regardless of how the ID bits are programmed into the Accept[] and Mask[] registers, the
API expects all 11 bits of a standard-frame ID and all 29 bits of an extended frame ID to be assigned to the
CAN_FilterID_ValueX and CAN_FilterID_ValueX_Mask fields. The API will perform any shifting and/or truncating
of ID bits.

The following examples show how the CAN_FilterInitTypeDef structure would be initialized to accomplish the filter
initialization for all six of the above examples, where:

 CAN_FilterInitTypeDef InitStruct;

For any given configuration, any unused fields in the CAN_FilterInitTypeDef structure are ignored by
the API.

Example #1: BasiCAN, (single-filter, standard-frame)

(Assumes MyCAN has been configured for BasiCAN…)

InitStruct.CAN_FilterID_Value1 = 0x56C; // 10101101100b
InitStruct.CAN_FilterID_Value1_Mask = 0x000;

CAN_FilterInit (MyCAN, &InitStruct);

Example #2: BasiCAN, (single-filter, standard-frame)

(Assumes MyCAN has been configured for BasiCAN…)

InitStruct.CAN_FilterID_Value1 = 0x560; // 10101100000b
InitStruct.CAN_FilterID_Value1_Mask = 0x018; // 00000011000b

CAN_FilterInit (MyCAN, &InitStruct);

Example #3: PeliCAN, (single-filter, standard-frame)

(Assumes MyCAN has been configured for PeliCAN…)

InitStruct.CAN_FilterMode = CAN_FILTER_MODE_SINGLE;
InitStruct.CAN_FrameFormat = CAN_FRAME_FORMAT_STANDARD;
InitStruct.CAN_FilterID_Value1 = 0x560; // 10101010101b
InitStruct.CAN_FilterRTR1 = 0;
InitStruct.CAN_FilterData[0] = 0x14;
InitStruct.CAN_FilterData[1] = 0x00;
InitStruct.CAN_FilterID_Value1_Mask = 0x000;
InitStruct.CAN_FilterRTR1_Mask = 1; // ignore RTR bit
InitStruct.CAN_FilterDataMask[0] = 0x01;
InitStruct.CAN_FilterDataMask[1] = 0xFF;
CAN_FilterInit (MyCAN, &InitStruct);

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

Example #4: PeliCAN, (single-filter, extended-frame)

(Assumes MyCAN has been configured for PeliCAN…)

InitStruct.CAN_FilterMode = CAN_FILTER_MODE_SINGLE;
InitStruct.CAN_FrameFormat = CAN_FRAME_FORMAT_EXTENDED;

// 1100111000011yyyyyyyy00001111b = 0x19C3YY0F = 0x19C3000F

InitStruct.CAN_FilterID_Value1 = 0x19C3000F;
InitStruct.CAN_FilterRTR1 = 0;

// 00000000000001111111100000000b = 0x0000FF00

InitStruct.CAN_FilterID_Value1_Mask = 0x0000FF00;
InitStruct.CAN_FilterRTR1_Mask = 1; // ignore RTR bit

CAN_FilterInit (MyCAN, &InitStruct);

Example #5: PeliCAN, (dual-filter, standard-frame)

(Assumes MyCAN has been configured for PeliCAN…)

InitStruct.CAN_FilterMode = CAN_FILTER_MODE_DUAL;
InitStruct.CAN_FrameFormat = CAN_FRAME_FORMAT_STANDARD;

// 0010xxxxxxxb = 0x100

InitStruct.CAN_FilterID_Value1 = 0x100;
InitStruct.CAN_FilterRTR1 = 0; InitStruct.CAN_FilterData[0] = 0xF0; //
1111zzzzb

InitStruct.CAN_FilterID_Value1_Mask = 0x07F; // 00001111111b
InitStruct.CAN_FilterRTR1_Mask = 0; // filter on RTR bit
InitStruct.CAN_FilterDataMask[0] = 0x0F; // 00001111b

// 0011xxxxxxxb = 0x180

InitStruct.CAN_FilterID_Value2 = 0x180;
InitStruct.CAN_FilterRTR2 = 0;
InitStruct.CAN_FilterID_Value2_Mask = 0x07F; // 00001111111b

InitStruct.CAN_FilterRTR2_Mask = 0; // filter on RTR bit

CAN_FilterInit (MyCAN, &InitStruct);

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

8/14/2019

APPLICATION NOTE

Example #6: PeliCAN, (dual-filter, extended-frame)

(Assumes MyCAN has been configured for PeliCAN…)

InitStruct.CAN_FilterMode = CAN_FILTER_MODE_DUAL;
InitStruct.CAN_FrameFormat = CAN_FRAME_FORMAT_EXTENDED;

// 001100001xxxxxxxxxxxxxxxxxxxxb = 0x061XXXXX = 0x06100000

InitStruct.CAN_FilterID_Value1 = 0x06100000;

// 00000000011111111111111111111b = 0x000FFFFF

InitStruct.CAN_FilterID_Value1_Mask = 0x000FFFFF;

// 110000000yyyyyyyyyyyyyyyyyyyyb = 0x180YYYYY = 0x18000000

InitStruct.CAN_FilterID_Value2 = 0x18000000;

// 00000000011111111111111111111b = 0x000FFFFF

InitStruct.CAN_FilterID_Value2_Mask = 0x000FFFFF;

CAN_FilterInit (MyCAN, &InitStruct);

4350 Centennial Blvd. | Colorado Springs CO 80907 USA | 1-800-645-8862 | cobhamaes.com

CAN Filtering and its Application Arm Cortex
M0+

APPLICATION NOTE

8/14/2019

REVISION HISTORY

Date Rev. # Author Change Description
8/14/19 1.0.0 SW,JA Original app note from Scott Wright, Updated by Jose Aguas. Initial Release
1/3/21 1.0.1 MB Updated to new design by Mary Burdis

Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any
products and services described herein at any time without notice. Consult an authorized sales representative to verify that the
information in this data sheet is current before using this product. The company does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does
the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of the company or of third parties.

