

FRONTGRADE DATASHEET UT54ACS193E

Synchronous 4-Bit Up-Down Dual Clock Counters

1/10/2018 Version #: 1.0

Features

- Look-ahead circuitry enhances cascaded counters
- Fully synchronous in count modes
- · Parallel asynchronous load for modulo-N count lengths
- Asynchronous clear
- 0.6μm CRH CMOS process
 - > Latchup immune
- · High speed
- · Low power consumption
- Wide power supply operating range of 3.0V to 5.5V
- · Available QML Q or V processes
- · 16-lead flatpack
- UT54ACS193E SMD 5962-96566

Description

The UT54ACS193E is a synchronous 4-bit, reversible up-down binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when instructed. Synchronous operation eliminates the output counting spikes normally associated with asynchronous counters.

The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count input (Up or Down). The direction of the counting is determined by which count input is pulsed while the other count input is high.

The counter is fully programmable. The outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The outputs will change to agree with the data inputs independently of the count pulses. Asynchronous loading allows the counter to be used as modulo-N divider by simply modifying the count length with the preset inputs.

A clear input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and the load inputs.

The counter is designed for efficient cascading without the need for external circuitry. The borrow output (\overline{BO}) produces a low-level pulse while the count is zero and the down input is low. Similarly, the carry output (\overline{CO}) produces a low-level pulse while the count is maximum and the up input is low.

The device is characterized over full HiRel temperature range of -55°C to +125°C.

Pinout

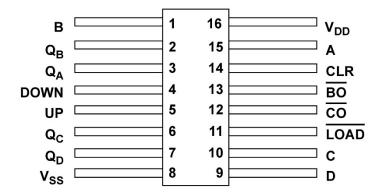
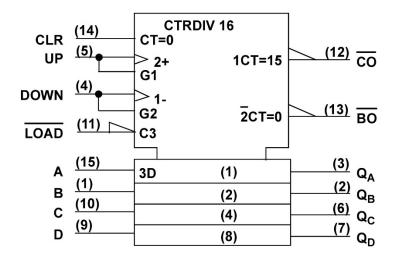
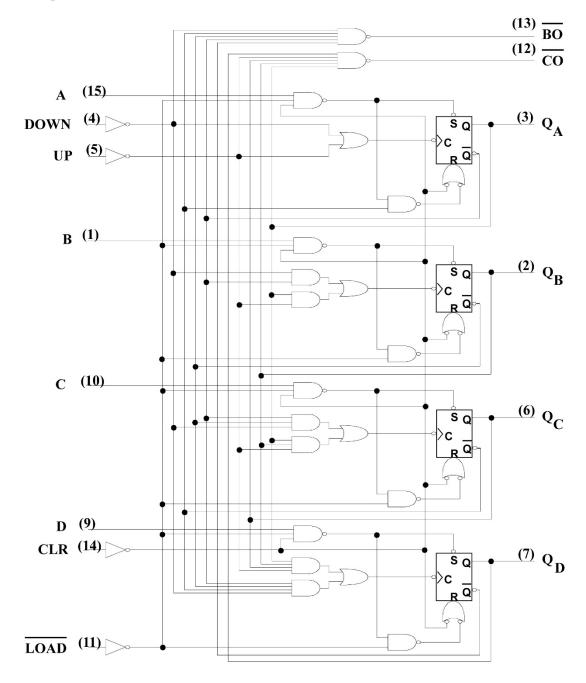



Figure 1: 16-Lead Flatpack
Top View

Function Table

Function	Clock Up	Clock Down	CLR	LOAD
Count Up	↑	Н	L	н
Count Down	Н	↑	L	Н
Reset	х	х	Н	х
Load Preset Input	Х	Х	L	L

Logic Symbol



Note:

1. Logic symbol in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Logic Diagram

Operational Environment¹

Parameter	Limit	Units
Total Dose	1.0E6	rads(Si)
SEU Threshold ²	108	MeV-cm ² /mg
SEL Threshold	120	MeV-cm ² /mg
Neutron Fluence	1.0E14	n/cm²

Notes:

- 1. Logic will not latchup during radiation exposure within the limits defined in the table.
- 2. Device storage elements are immune to SEU affects.

Absolute Maximum Ratings

Symbol	Parameter	Limit	Units
V _{DD}	Supply voltage	-0.3 to 7.0	V
V _{I/O}	Voltage any pin	-0.3 to V _{DD} +0.3	V
T _{STG}	Storage Temperature range	-65 to +150	°C
TJ	Maximum junction temperature	+175	°C
T _{LS}	Lead temperature (soldering 5 seconds)	+300	°C
O JC	Thermal resistance junction to case	15.5	°C/W
I _I	DC input current	±10	mA
P_D^2	Maximum package power dissipation permitted @ T_C = +125°C	3.3	W

Notes:

- 1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Per MIL-STD-883, method 1012.1, Section 3.4.1, PD = $(T_{j(max)} T_{C(max)}) / \Theta_{jc}$

Recommended Operating Conditions

Symbol	Parameter	Limit	Units
V _{DD}	Supply voltage	3.0 to 5.5	V
V _{IN}	Input voltage any pin	0 to V _{DD}	V
T _C	Temperature range	-55 to +125	°C

DC Electrical Characteristics for the UT54ACS193E⁷

 $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^6; -55^{\circ}C < T_C < +125^{\circ}C)$

Symbol	Des	cription	Condition	MIN	MAX	Unit
V _{IL}	Low-level input voltage	1	V _{DD} from 3.0V to 5.5V		0.3V _{DD}	V
V _{IH}	High-level input voltage	e ¹	V _{DD} from 3.0V to 5.5V	0.7 V _{DD}		V
I _{IN}	Input leakage current		$V_{IN} = V_{DD}$ or V_{SS}	-1	1	μА
V _{OL}	Low-level output voltag	ge ³	$I_{OL} = 100 \mu A$ V _{DD} from 3.0V to 5.5V		0.25	V
V _{OH}	High-level output volta	ge ³	$I_{OH} = -100 \mu A$ V _{DD} from 3.0V to 5.5V	V _{DD} -0.25		V
I _{OS1}	Short-circuit output cur	rrent ^{2, 4}	$V_O = V_{DD}$ and V_{SS} V_{DD} from 4.5V to 5.5V	-200	200	mA
I _{OS2}	Short-circuit output cur	rrent ^{2, 4}	$V_O = V_{DD}$ and V_{SS} V_{DD} from 3.0V to 3.6V	-100	100	mA
I _{OL1}	Low level output currer	nt ⁹ (sink)	$V_{IN} = V_{DD}$ or V_{SS} $V_{OL} = 0.4V$ V_{DD} from 4.5V to 5.5V	8		mA
I _{OL2}	Low level output current ⁹ (sink)		$V_{IN} = V_{DD}$ or V_{SS} $V_{OL} = 0.4V$ V_{DD} from 3.0V to 3.6V	6		mA
I _{ОН1}	High level output current ⁹ (source)		$V_{IN} = V_{DD}$ or V_{SS} $V_{OH} = V_{DD}$ -0.4V V_{DD} from 4.5V to 5.5V	-8		mA
I _{OH2}	High level output current ⁹ (source)		$V_{IN} = V_{DD}$ or V_{SS} $V_{OH} = V_{DD}$ -0.4V V_{DD} from 3.0V to 3.6V	-6		mA
P _{total1}	Power dissipation ^{8, 9}		$C_L = 50pF$ $V_{DD} = 4.5V \text{ to } 5.5V$		1.4	mW/ MHz
P _{total2}	Power dissipation ^{8, 9}		$C_L = 50pF$ $V_{DD} = 3.0V \text{ to } 3.6V$		0.6	mW/ MHz
		Pre-Rad All Device Types			10	
IDDO I	Quiescent Supply Current Post-Rad Device Type-03 Post-Rad Device Type-02	$V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = V_{DD} \text{ MAX}$		50	μΑ	
				130		
C _{IN}	Input capacitance ⁵		f = 1MHz V _{DD} =0V		15	pF
C _{OUT}	Output capacitance ⁵		$f = 1MHz V_{DD} = 0V$		15	pF

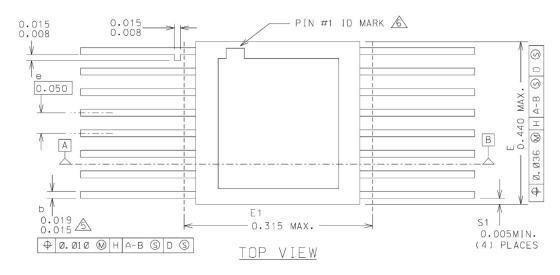
Notes:

- 1. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, -0%; $V_{IL} = V_{IL}(max) + 0\%$, -50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$.
- 2. Supplied as a design limit but not guaranteed or tested.
- 3. Per MIL-PRF-38535, for current density ≤ 5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/MHz.
- 4. Not more than one output may be shorted at a time for maximum duration of one second.
- 5. Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1MHz and a signal amplitude of 50mV rs maximum.
- 6. Maximum allowable relative shift equals 50mV.
- 7. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.
- 8. Power dissipation specified per switching output.
- 9. Guaranteed by characterization, but not tested.

AC Electrical Characteristics for UT54ACS193E²

 $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^1, -55^{\circ}C < T_C < +125^{\circ}C)$

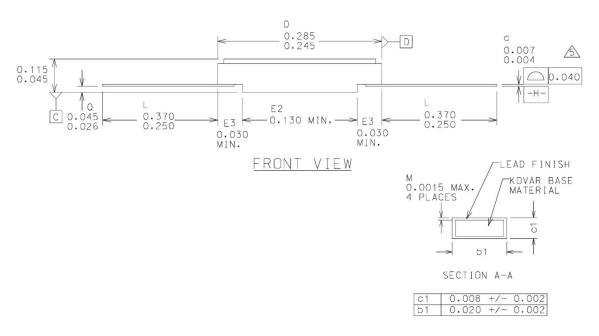
Symbol	Parameter	Condition	V_{DD}	Minimum	Maximum	Unit
	LIDAS OS	C	3.0V to 3.6V	3	25	
t _{PLH1}	UP to Qn	C _L = 50pF	4.5V to 5.5V	3	15	ns
	LID to On	C _L = 50pF	3.0V to 3.6V	4	27	
t _{PHL1}	UP to Qn	C _L = 50pr	4.5V to 5.5V	3	16	ns
	UP to CO	C _L = 50pF	3.0V to 3.6V	2	17	nc
t _{PLH2}	OP to CO	C _L = 50pr	4.5V to 5.5V	2	10	ns
	IID to GO	C - 50x5	3.0V to 3.6V	2	20	
t _{PHL2}	UP to CO	C _L = 50pF	4.5V to 5.5V	2	11	ns
	DOWN to BO C _L = !	6 50.5	3.0V to 3.6V	2	17	
t _{PLH3}		C _L = 50pF	4.5V to 5.5V	2	10	ns
	DOWN to BO	C	3.0V to 3.6V	2	20	ns
t _{PHL3}		C _L = 50pF	4.5V to 5.5V	2	11	
	DOWN to On	C	3.0V to 3.6V	3	27	ns
t _{PLH4}	DOWN to Qn	C _L = 50pF	4.5V to 5.5V	3	15	
_	DOWN to On	C	3.0V to 3.6V	4	27	
t _{PHL4}	DOWN to Qn	C _L = 50pF	4.5V to 5.5V	3	16	ns
	1015	6 50.5	3.0V to 3.6V	4	27	
t _{PLH5}	$\overline{\text{LOAD}}$ to Qn $C_L = 50 \text{pF}$	C _L = 50pF	4.5V to 5.5V	3	16	ns
t _{PHL5}		C 50×5	3.0V to 3.6V	4	26	
	LOAD to Qn $C_L = 5$	C _L = 50pF	4.5V to 5.5V	3	16	ns
	GIRLS OF	6 50.5	3.0V to 3.6V	4	25	
t _{PHL6}	CLR to Qn	C _L = 50pF	4.5V to 5.5V	3	15	ns

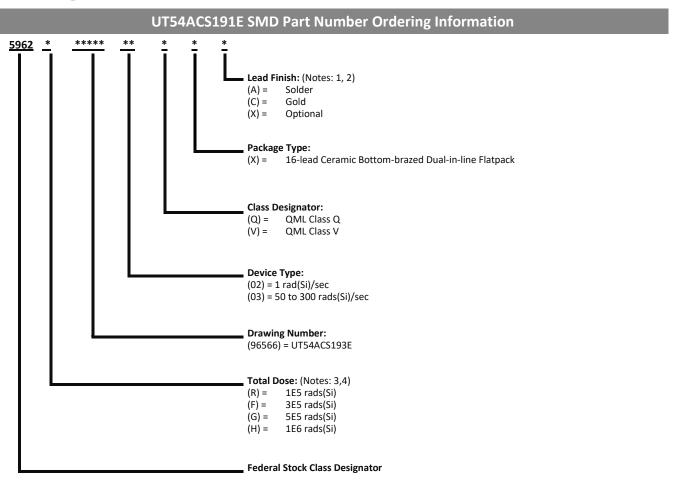

Symbol	Parameter	Condition	V_{DD}	Minimum	Maximum	Unit	
t 3	Manipular algebrasis	C 50-5	3.0V to 3.6V		80	MHz	
f _{MAX} ³	Maximum clock frequency	C _L = 50pF	4.5V to 5.5V		120	IVIHZ	
	LOAD inactive setup time before UP or	C	3.0V to 3.6V	1			
t _{SU1}	DOWN↑	C _L = 50pF	4.5V to 5.5V	1		ns	
_	CLR inactive setup time before UP or	C	3.0V to 3.6V	1			
t _{SU2}	DOWN↑	C _L = 50pF	4.5V to 5.5V	1		ns	
	A, B, C, D setup time before LOAD 个	C _L = 50pF	3.0V to 3.6V	4			
t _{SU3}			4.5V to 5.5V	3		ns	
	UP high hold time after DOWN个	C _L = 50pF	3.0V to 3.6V	5		ns	
t _{H1}			4.5V to 5.5V	3			
_	DOWN high hold time of the LIDA	C	3.0V to 3.6V	6			
t _{H2}	DOWN high hold time after UP个	C _L = 50pF	4.5V to 5.5V	4		ns	
_	A B C B L L L L L L L L L L L L L L L L L	0 50 5	3.0V to 3.6V	0		ns	
t _{H3}	A, B, C, D hold time after LOAD ↑	C _L = 50pF	4.5V to 5.5V	0			
	Minimum pulse width		3.0V to 3.6V	8			
t _W	UP high or low DOWN high or low LOAD low; CLR high	C _L = 50pF	4.5V to 5.5V	6		ns	

Notes:

- 1. Maximum allowable relative shift equals 50mV.
- 2. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si), and 1E6 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.
- 3. Maximum clock frequency f_{MAX} is the max rate at which the device will count up or down at the given voltage. However, the user must wait the appropriate UP-to-Qn or Down-to-Qn propagation delay time in order to observe the current counter value.

Packaging




Figure 2: 16-Lead Flatpack

Notes:

- 1. All exposed metalized areas are gold plated over electroplated nickel per MIL-M-38510.
- 2. The lid is electrically connected to V_{SS}.
- 3. Lead finishes are in accordance to MIL-PRF-38535.
- 4. Package dimensions and symbols are similar to MIL-STD-1835 variation F-5A.
- 5. Lead position and coplanarity are not measured.
- 6. ID mark symbol is vendor option.

Ordering Information: UT54ACS193E: SMD

Notes:

- 1. Lead finish (A, C or X) must be specified.
- 2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).
- 3. Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening. For prototype inquiries, contact factory.
- 4. Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si) or 1E6 rads(Si) and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A.

Revision History

Date	Revision #	Author	Change Description	Page #
10/17		RT	 Edited IDDQ Applied new Frontgrade Data Sheet template to the document. 	5
1/18		RT	Updates to reflect current SMD	

Datasheet Definitions

	Definition
Advanced Datasheet	Frontgrade reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final .
Preliminary Datasheet	Frontgrade reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available.
Datasheet	Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes.

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service convey a license to any patents rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.